Displaying 20 results from an estimated 4000 matches similar to: "Manually calculate SVM"
2009 Feb 19
1
matrix computation???
Hello
Can anyone tell me what I am doing wrong below? My Y and y_hat are the same.
A<-scale(stackloss)
n1<- dim(A)[1];n2<-dim(A)[2]
X<-svd(A)
Y<- matrix(A[,"stack.loss"],nrow=n1)
Y
y_hat <-matrix((X$u%*% t(X$u))%*%Y,nrow=n1,byrow=T)
y_hat
[[alternative HTML version deleted]]
2010 Oct 25
1
online course: SVM in R with Lutz Hamel at statistics.com
Support vector machines (SVMs) have established themselves as
one of the preeminent machine learning models for classification
and regression over the past decade or so, frequently outperforming
artificial neural networks in task such as text mining and
bioinformatics. Dr. Lutz Hamel, author of "Knowledge Discovery with
Support Vector Machines" from Wiley will present his online course
2023 Jan 26
1
Failing to install the rgl package
Hi,
I try to execute the seven lines of code below to plot a graph. But I
am failing as the messages below show. Where am I going wrong?
install.packages("rgl")
library(rgl)
y_hat = X%*%B_hat
open3d(windowRect = c(100,100,900,900),family = "serif")
color = rainbow(length(y_hat))[rank(y_hat)]
plot3d(educ,exper,wage,col = color,type = "s",size = 0.5,xlim =
2005 Jun 28
2
svm and scaling input
Dear All,
I've a question about scaling the input variables for an analysis with svm (package e1071). Most of my variables are factors with 4 to 6 levels but there are also some numeric variables.
I'm not familiar with the math behind svms, so my assumtions maybe completely wrong ... or obvious. Will the svm automatically expand the factors into a binary matrix? If I add numeric
2010 Jun 23
1
Estimate of variance and prediction for multiple linear regression
Hi, everyone,
Night. I have three questions about multiple linear regression in R.
Q1:
y=rnorm(10,mean=5)
x1=rnorm(10,mean=2)
x2=rnorm(10)
lin=lm(y~x1+x2)
summary(lin)
## In the summary, 'Residual standard error: 1.017 on 7 degrees of freedom',
1.017 is the estimate of the constance variance?
Q2:
beta0=lin$coefficients[1]
beta1=lin$coefficients[2]
beta2=lin$coefficients[3]
2003 Jan 31
1
svm regression in R
Hallo,
I have a question concerning SVM regression in R. I intend to use SVMs for feature selection (and knowledge discovery). For this purpose I will need to extract the weights that are associated with my features. I understand from a previous thread on SVM classification, that predictive models can be derived from SVs, coefficiants and rhos, but it is unclear for me how to transfer this
2011 Jan 07
2
Stepwise SVM Variable selection
I have a data set with about 30,000 training cases and 103 variable.
I've trained an SVM (using the e1071 package) for a binary classifier
{0,1}. The accuracy isn't great.
I used a grid search over the C and G parameters with an RBF kernel to
find the best settings.
I remember that for least squares, R has a nice stepwise function that
will try combining subsets of variables to find
2008 Apr 09
0
How do I get the parameters out of e1071's svm?
Hi all,
I'm trying to get a simple, linear decision surface from e1071's svm.
I've run it like this:
svm(as.factor(slow) ~ SLICE.3 + PSGR.7 + SOLUTIONS.6 + DR.10, y,
kernel='linear', cost=1e6, class.weights=c('FALSE'=1, 'TRUE'=10))
According to the docs, kernel='linear' has a kernel u'v. Since I have 4
independent variables, I'd expect to
2007 Oct 17
1
y_hat
Hello,
suppose one has the following values
x1 <- rnorm(10,5,1)
x2 <- rgamma(10,5,1)
y <- rnorm(10,4,1)
mydat <- data.frame(y,x1,x2)
then one can use glm like
mod <- glm(y~x1+x2, data=mydat, family=gaussian)
But how could I estimate y_hat?
Thanks alot!
Sam
---------------------------------
[[alternative HTML version deleted]]
2015 Dec 10
3
SVM hadoop
Estimados
Un día leí algo en el siguiente hipervínculo, pero nunca lo use.
http://blog.revolutionanalytics.com/2015/06/using-hadoop-with-r-it-depends.html
Javier Rubén Marcuzzi
De: Carlos J. Gil Bellosta
Enviado: miércoles, 9 de diciembre de 2015 14:33
Para: MªLuz Morales
CC: r-help-es
Asunto: Re: [R-es] SVM hadoop
No, no correrán en paralelo si usas los SVM de paquetes como e1071.
No
2006 Jan 27
1
Classifying Intertwined Spirals
I'm using an SVM as I've seen a paper that reported extremely good
results. I'm not having such luck. I'm also interested in ideas for
other approaches to the problem that can also be applied to general
problems (no assuming that we're looking for spirals).
Here is my code:
library(mlbench)
library(e1071)
raw <- mlbench.spirals(194, 2)
spiral <-
2005 Dec 05
1
Help
Hi R-Users,
I apologize if it is too simple question for all. I have a multivariate
dataset having 7 variables as independent and 1 dependent variable. 248
data points are there. I want to do out sample forecast first
considering 156 points. So I'll have to start from 157th point and
calculate the 157th y_hat value. In this way it will go to 248th data
point. Can any one tell me how I can
2015 Dec 10
2
SVM hadoop
Hola,
Puedes poner un RStudio en Amazon, poner "caret" y a correr....
No sé si tendrás suficiente con lo que te pueda ofrecer Amazon para tu
problema... creo que sí... ;-)....
O directamente hacerlo aquí, que toda esta instalación ya la tienen hecha:
http://www.teraproc.com/front-page-posts/r-on-demand/
Gracias,
Carlos.
El 10 de diciembre de 2015, 14:43, MªLuz Morales <mlzmrls
2012 Aug 19
1
e1071 - tuning is not giving the best within the range
Hi everybody,
I am new in e1071 and with SVMs. I am trying to understand the performance
of SVMs but I face with a situation that I thought as not meaningful.
I added the R code for you to see what I have done.
/set.seed(1234)
data <- data.frame( rbind(matrix(rnorm(1500, mean = 10, sd = 5),ncol = 10),
matrix(rnorm(1500, mean = 5, sd = 5),ncol = 10)))
class <- as.factor(rep(1:2,
2005 Jul 20
1
predict.lm - standard error of predicted means?
Simple question.
For a simple linear regression, I obtained the "standard error of
predicted means", for both a confidence and prediction interval:
x<-1:15
y<-x + rnorm(n=15)
model<-lm(y~x)
predict.lm(model,newdata=data.frame(x=c(10,20)),se.fit=T,interval="confidence")$se.fit
1 2
0.2708064 0.7254615
2011 Nov 14
2
[LLVMdev] PTX backend fatal error
Hi everybody,
I am testing the PTX backend using the OpenCL NVIDIA SDK benchmarks.
Compiling the Histogram64.cl program I get a several backend errors.
I isolated one of them in the following kernel program:
__kernel void kernel_function(__global int *input) {
__local char localArray[16];
for(unsigned int index = 0; index < 16; ++index)
localArray[index] = 0;
input[0] =
2015 Dec 09
2
SVM hadoop
Buenos días,
alguien sabe si hay alguna manera de implementar una máquina de soporte
vectorial (svm) con R-hadoop??
Mi interés es hacer procesamiento big data con svm. Se que en R, existen
los paquetes {RtextTools} y {e1071} que permiten hacer svm. Pero no estoy
segura de que el algoritmo sea paralelizable, es decir, que pueda correr en
paralelo a través de la plataforma R-hadoop.
Muchas
2015 Dec 11
2
SVM hadoop
Hola Mª Luz,
Te cuento un poco mi visión:
Lo primero de todo es tener claro qué quiero hacer exactamente en paralelo,
se me ocurren 3 escenarios:
(1) Aplicar un modelo en este caso SVM sobre unos datos muy grandes y por
eso necesito hadoop/spark
(2) Realizar muchos modelos SVM sobre datos pequeños (por ejemplo uno por
usuario) y por eso necesito hadoop/spark para parelilizar estos procesos
2011 Nov 14
0
[LLVMdev] PTX backend fatal error
On Mon, Nov 14, 2011 at 8:57 AM, Alberto Magni <alberto.magni86 at gmail.com>wrote:
> Hi everybody,
>
> I am testing the PTX backend using the OpenCL NVIDIA SDK benchmarks.
> Compiling the Histogram64.cl program I get a several backend errors.
>
> I isolated one of them in the following kernel program:
>
> __kernel void kernel_function(__global int *input) {
>
2011 Nov 14
1
[LLVMdev] PTX backend fatal error
Justin,
Add this to your TargetLowering constructor, this fixes the mem* issue.
maxStoresPerMemcpy = 4096;
maxStoresPerMemmove = 4096;
maxStoresPerMemset = 4096;
From: llvmdev-bounces at cs.uiuc.edu [mailto:llvmdev-bounces at cs.uiuc.edu] On Behalf Of Justin Holewinski
Sent: Monday, November 14, 2011 7:12 AM
To: Alberto Magni
Cc: llvmdev at cs.uiuc.edu
Subject: Re: [LLVMdev] PTX backend