similar to: lrm in Design

Displaying 20 results from an estimated 4000 matches similar to: "lrm in Design"

2005 Jul 12
1
Design: predict.lrm does not recognise lrm.fit object
Hello I'm using logistic regression from the Design library (lrm), then fastbw to undertake a backward selection and create a reduced model, before trying to make predictions against an independent set of data using predict.lrm with the reduced model. I wouldn't normally use this method, but I'm contrasting the results with an AIC/MMI approach. The script contains: # Determine full
2009 Aug 21
1
Possible bug with lrm.fit in Design Library
Hi, I've come across a strange error when using the lrm.fit function and the subsequent predict function. The model is created very quickly and can be verified by printing it on the console. Everything looks good. (In fact, the performance measures are rather nice.) Then, I want to use the model to predict some values. I get the following error: "fit was not created by a Design
2009 Oct 25
1
Getting AIC from lrm in Design package
I am trying to obtain the AICc after performing logistic regression using the Design package. For simplicity, I'll talk about the AIC. I tried building a model with lrm, and then calculating the AIC as follows: likelihood.ratio <- unname(lrm(succeeded~var1+var2,data=scenario,x=T,y=T)$stats["Model L.R."]) #Model likelihood ratio??? model.params <- 2 #Num params in my model AIC
2009 Aug 21
1
Repost - Possible bug with lrm.fit in Design Library
Hi, I've come across a strange error when using the lrm.fit function and the subsequent predict function. The model is created very quickly and can be verified by printing it on the console. Everything looks good. (In fact, the performance measures are rather nice.) Then, I want to use the model to predict some values. I get the following error: "fit was not created by a Design
2009 Sep 04
2
lrm in Design package--missing value where TRUE/FALSE needed
Hi, A error message arose while I was trying to fit a ordinal model with lrm() I am using R 2.8 with Design package. Here is a small set of mydata: RC RS Sex CovA CovB CovC CovD CovE 2 1 0 1 1 0 -0.005575280 2 2 1 0 1 0 1 -0.001959580 2 3 0 0 0 1 0 -0.004725880 2 0 0 0 1 0 0 -0.005504850 2 2 1 1 0 0 0 -0.003880170 1 2 1 0 0 1 0 -0.006074230 2 2 1 0 0 1 1 -0.003963920 2 2 1 0 0 1 0
2009 Sep 26
1
Summary/Bootstrap for Design library's lrm function
Can anyone tell me what I might be doing incorrectly for an ordinal logistic regression for lrm? I cannot get R(2.9.1)to run either summary nor will it let me bootstrp to validate. ### Y is a 5 value measure with a range from 1-5, the independent variables are the same. N=75 but when we knock out the NAs it comes down to 51#### > lrm(formula = Y ~ permemp + rev + gconec + scorpstat, data =
2008 Dec 13
2
Obtaining p-values for coefficients from LRM function (package Design) - plaintext
Sent this mail in rich text format before. Excuse me for this. ------------------------ Dear all, I'm using the lrm function from the package "Design", and I want to extract the p-values from the results of that function. Given an lrm object constructed as follows : fit <- lrm(Y~(X1+X2+X3+X4+X5+X6+X7)^2, data=dataset) I need the p-values for the coefficients printed by calling
2006 Oct 02
2
Help with lrm function in package Design
Hi, there, I am having trouble using 'lrm' function in package 'Design'. Basically, the ' . ' after ' ~ ' wouldn't work. Here are some sample codes: > temp <- data.frame(a=c(rep(0,3),rep(1,3)),b=rnorm(6),c=c('a','b','c','a','b','c')) > lrm(a~.,data=temp) Error in terms.formula(formula, specials =
2009 Aug 17
3
Help understanding lrm function of Design library
Hi, I'm developing an experiment with logistic regression. I've come across the lrm function in the Design library. While I understand and can use the basic functionality, there are a ton of options that go beyond my knowledge. I've carefully read the help page for lrm, but don't understand many of the arguments and optional return values. (penalty, penalty.matrix,
2010 Jun 18
1
Fitting a polynomial using lrm from the Design library
Hi all, I am looking to fit a logistic regression using the lrm function from the Design library. I am interested in this function because I would like to obtain "pseudo-R2" values (see http://tolstoy.newcastle.edu.au/R/help/02b/1011.html). Can anyone help me with the syntax? If I fit the model using the stats library, the code looks like this: model <- glm(x$trait ~ x$PC1 +
2008 Apr 15
1
Predicting ordinal outcomes using lrm{Design}
Dear List, I have two questions about how to do predictions using lrm, specifically how to predict the ordinal response for each observation *individually*. I'm very new to cumulative odds models, so my apologies if my questions are too basic. I have a dataset with 4000 observations. Each observation consists of an ordinal outcome y (i.e., rating of a stimulus with four possible
2008 Apr 03
1
Design package lrm summary and factors
Hello, I have question regarding the lrm function and estimating the odds ratio between different levels of a factored variable. The following code example illustrates the problem I am having. I have a data set with an outcome variable (0,1) and an input variable (A,B,C). I would like to estimate the effect of C vs B, but when I perform the summary I only get A vs B and A vs C, even though I
2008 Jun 30
2
difference between MASS::polr() and Design::lrm()
Dear all, It appears that MASS::polr() and Design::lrm() return the same point estimates but different st.errs when fitting proportional odds models, grade<-c(4,4,2,4,3,2,3,1,3,3,2,2,3,3,2,4,2,4,5,2,1,4,1,2,5,3,4,2,2,1) score<-c(525,533,545,582,581,576,572,609,559,543,576,525,574,582,574,471,595, 557,557,584,599,517,649,584,463,591,488,563,553,549) library(MASS) library(Design)
2004 Sep 30
1
polr (MASS) and lrm (Design) differences in tests of statistical signifcance
Greetings: I'm running R-1.9.1 on Fedora Core 2 Linux. I tested a proportional odds logistic regression with MASS's polr and Design's lrm. Parameter estimates between the 2 are consistent, but the standard errors are quite different, and the conclusions from the t and Wald tests are dramatically different. I cranked the "abstol" argument up quite a bit in the polr
2010 Sep 20
5
predict.lrm ( Design package)
Dear List, I am familier with binary models, however i am now trying to get predictions from a ordinal model and have a question. I have a data set made up of 12 categorical predictors, the response variable is classed as 1,2,3,4,5,6, this relates to threat level of the species ( on the IUCN rating). Previously i have combined levels 1 and 2 to form = non threatened and then combined 3-6 to
2010 Mar 11
2
logistic model diagnostics residuals.lrm {design}, residuals()
I am interested in a model diagnostic for logistic regression which is normally distributed (much like the residuals in linear regression with are ~ N(0,variance unknown). My understanding is that most (all?) of the residuals returned by residuals.lrm {design} either don't have a well defined distribution or are distributed as Chi-Square. Have I overlooked a residual measure or would it be
2006 Oct 27
3
Marginal Effect larger than 1 for a binary variable (summary.Design after lrm)
Dear All: I run a logistic regression (using lrm in the Design package), and after that, I use the command "summary" to get the marginal effects of each variable. But one strange thing happens on my binary dependent variable: The marginal effect of it jumping from 0 to 1 is 1.77. I believe the marginal effect of binary variable x1 has interpretation should be P(Y=1|x1=1,
2010 Oct 01
6
Interpreting the example given by Frank Harrell in the predict.lrm {Design} help
Dear list, I am relatively new to ordinal models and have been working through the example given by Frank Harrell in the predict.lrm {Design} help All of this makes sense to me, except for the responses, i,e how do i interpret them? i would be extremely grateful if someone could explain the results? First i establish the date and model - > y <- factor(sample(1:3, 400, TRUE), 1:3,
2017 Sep 14
0
Help understanding why glm and lrm.fit runs with my data, but lrm does not
> On Sep 14, 2017, at 12:30 AM, Bonnett, Laura <L.J.Bonnett at liverpool.ac.uk> wrote: > > Dear all, > > I am using the publically available GustoW dataset. The exact version I am using is available here: https://drive.google.com/open?id=0B4oZ2TQA0PAoUm85UzBFNjZ0Ulk > > I would like to produce a nomogram for 5 covariates - AGE, HYP, KILLIP, HRT and ANT. I have
2010 Dec 25
2
predict.lrm vs. predict.glm (with newdata)
Hi all I have run into a case where I don't understand why predict.lrm and predict.glm don't yield the same results. My data look like this: set.seed(1) library(Design); ilogit <- function(x) { 1/(1+exp(-x)) } ORDER <- factor(sample(c("mc-sc", "sc-mc"), 403, TRUE)) CONJ <- factor(sample(c("als", "bevor", "nachdem",