similar to: AICc

Displaying 20 results from an estimated 7000 matches similar to: "AICc"

2017 Jun 08
1
stepAIC() that can use new extractAIC() function implementing AICc
I would like test AICc as a criteria for model selection for a glm using stepAIC() from MASS package. Based on various information available in WEB, stepAIC() use extractAIC() to get the criteria used for model selection. I have created a new extractAIC() function (and extractAIC.glm() and extractAIC.lm() ones) that use a new parameter criteria that can be AIC, BIC or AICc. It works as
2004 Dec 04
1
AIC, AICc, and K
How can I extract K (number of parameters) from an AIC calculation, both to report K itself and to calculate AICc? I'm aware of the conversion from AIC -> AICc, where AICc = AIC + 2K(K+1)/(n-K-1), but not sure of how K is calculated or how to extract that value from either an AIC or logLik calculation. This is probably more of a basic statistics question than an R question, but I thank
2005 Nov 03
1
Help on model selection using AICc
Hi, I'm fitting poisson regression models to counts of birds in 1x1 km squares using several environmental variables as predictors. I do this in a stepwise way, using the stepAIC function. However the resulting models appear to be overparametrized, since too much variables were included. I would like to know if there is the possibility of fitting models by steps but using the AICc
2006 Jul 12
2
AICc vs AIC for model selection
Hi, I am using 'best.arima' function from forecast package to obtain point forecast for a time series data set. The documentation says it utilizes AIC value to select best ARIMA model. But in my case the sample size very small - 26 observations (demand data). Is it the right to use AIC value for model selection in this case. Should I use AICc instead of AIC. If so how can I modify
2005 Nov 02
1
model selection based on AICc
Dear members of the list, I'm fitting poisson regression models using stepAIC that appear to be overparametrized. I would like to know if there is the possibility of fitting models by steps but using the AICc instead of AIC. Best wishes German Lopez
2012 Feb 13
2
R's AIC values differ from published values
Using the Cement hardening data in Anderson (2008) Model Based Inference in the Life Sciences. A Primer on Evidence, and working with the best model which is lm ( y ~ x1 + x2, data = cement ) the AIC value from R is model <- lm ( formula = y ~ x1 + x2 , data = cement ) AIC ( model ) 64.312 which can be converted to AICc by adding the bias
2005 Nov 17
3
loess: choose span to minimize AIC?
Is there an R implementation of a scheme for automatic smoothing parameter selection with loess, e.g., by minimizing one of the AIC/GCV statistics discussed by Hurvich, Simonoff & Tsai (1998)? Below is a function that calculates the relevant values of AICC, AICC1 and GCV--- I think, because I to guess from the names of the components returned in a loess object. I guess I could use
2005 Oct 29
2
LaTex error when creating DVI version when compiling package
Dear Listers, I got this message when compiling a package: * creating pgirmess-manual.tex ... OK * checking pgirmess-manual.text ... ERROR LaTex errors when creating DVI version. This typically indicates Rd problems. The message is quite explicit but I struggled a lot before understanding that the trouble comes from a single file "selMod.rd" among 44 topics. Even though I have
2007 May 03
3
factanal AIC?
Dear list members, Could any expert on factor analysis be so kind to explain how to calculate AIC on the output of factanal. Do I calculate AIC wrong or is factanal$criteria["objective"] not a negative log-likelihood? Best regards Jens Oehlschl?gel The AIC calculated using summary.factanal below don't appear correct to me: n items factors total.df rest.df model.df
2007 May 03
3
factanal AIC?
Dear list members, Could any expert on factor analysis be so kind to explain how to calculate AIC on the output of factanal. Do I calculate AIC wrong or is factanal$criteria["objective"] not a negative log-likelihood? Best regards Jens Oehlschl?gel The AIC calculated using summary.factanal below don't appear correct to me: n items factors total.df rest.df model.df
2006 Dec 12
1
Calculating AICc using conditional logistic regression
I have a case-control study that I'm analysing using the conditional logistic regression function clogit from the survival package. I would like to calculate the AICc of the models I fit using clogit. I have a variety of scripts that can calculate AICc for models with a logLik method, but clogit does not appear to use this method. Is there a way I can calculate AICc from clogit in R? Many
2011 Sep 04
2
AICc function with gls
Hi I get the following error when I try and get the AICc for a gls regression using qpcR: > AICc(gls1) Loading required package: nlme Error in n/(n - p - 1) : 'n' is missing My gls is like this: > gls1 Generalized least squares fit by REML Model: thercarnmax ~ therherbmax Data: NULL Log-restricted-likelihood: 2.328125 Coefficients: (Intercept) therherbmax 1.6441405
2012 Mar 29
1
how to increase speed for function?/time efficiency of below function
i am using sarima() function as below ___________________________________________________________________________________________ sarima=function(data,p,d,q,P=0,D=0,Q=0,S=-1,tol=.001){ n=length(data) constant=1:n xmean=matrix(1,n,1) if (d>0 & D>0) fitit=arima(data, order=c(p,d,q), seasonal=list(order=c(P,D,Q), period=S),
2004 Oct 31
2
Obtaining fitted model information
Dear list, I am brand new to R and using Dalgaard's (2002) book Introductory Statistics with R (thus, some of my terminology may be incorrect). I am fitting regression models and I want to use Hurvich and Tsai's AICC statistic to examine my regression models. This penalty can be expressed as: 2*npar * (n/(n-npar-1)). While you can obtain AIC, BIC, and logLik, I want to impose the AICC
2004 Dec 17
0
behaviour of BIC and AICc code
Dear R-helpers I have generated a suite of GLMs. To select the best model for each set, I am using the meta-analysis approach of de Luna and Skouras (Scand J Statist 30:113-128). Simply put, I am calculating AIC, AICc, BIC, etc., and then using whichever criterion minimizes APE (Accumulated Prediction Error from cross-validations on all model sets) to select models. My problem arises where I
2011 Jul 13
3
Sum weights of independent variables across models (AIC)
Hello, I'd like to sum the weights of each independent variable across linear models that have been evaluated using AIC. For example: > library(MuMIn) > data(Cement) > lm1 <- lm(y ~ ., data = Cement) > dd <- dredge(lm1, beta = TRUE, eval = TRUE, rank = "AICc") > get.models(dd, subset = delta <4) There are 5 models with a Delta AIC Score of
2011 Jul 26
1
nls - can't get published AICc and parameters
Hi I'm trying to replicate Smith et al.'s (http://www.sciencemag.org/content/330/6008/1216.abstract) findings by fitting their Gompertz and logistic models to their data (given in their supplement). I'm doing this as I want to then apply the equations to my own data. Try as a might, I can't quite replicate them. Any thoughts why are much appreciated. I've tried contacting the
2006 Dec 16
2
question about trailing arguments in an S4 method
I'm trying to add arguments to the AIC method for some classes -- things like weights=TRUE to calculate AIC weights corr=TRUE, nobs to calculate AICc delta=TRUE to put a delta-AIC column in the output. The problem is that AIC is defined as AIC(object, ..., k=2) where k is the constant associated with the penalty term and ... is a list of objects that will have their AICs calculated
2010 Aug 17
2
how to selection model by BIC
Hi All: the package "MuMIn" can be used to select the model based on AIC or AICc. The code is as follows: data(Cement) lm1 <- lm(y ~ ., data = Cement) dd <- dredge(lm1,rank="AIC") print(dd) If I want to select the model by BIC, what code do I need to use? And when to select the best model based on AIC, what the differences between the function "dredge" in
2006 Apr 07
1
how to run stepAIC starting with NULL model?
Hello, I'm trying to figure out how to run the stepAIC function starting with the NULL model. I can call the null model (e.g., lm(y ~ NULL)), but using this object in stepAIC doesn't seem to work. The objective is to calculate AICc. This can be done if stepAIC can be run starting with the NULL model; the (2p(p-1)/(n-p-1))to get AICc would be added to the final step AIC value. Can