search for: zstar

Displaying 3 results from an estimated 3 matches for "zstar".

Did you mean: star
2013 Apr 30
1
Question regarding error "x and y lengths differ"
...we can compute a confidence interval for our measure of the population mean for each one of our samples. Now let¢s compute and plot the confidence intervals for the 50 samples:> m = 50; n = 40; mu = mean(pop); sigma = sd(pop); > SE = sigma/sqrt(n) # Standard error in mean > alpha = 0.10 ; zstar = qnorm(1-alpha/2); # Find z for 90% confidence > matplot(rbind( samp_mean - zstar*SE, samp_mean + zstar*SE),rbind(1:m,1:m), type="l", lty=1); > abline(v=mu) I am receiving the error "Error in xy.coords(x, y, xlabel, ylabel, log = log) : 'x' and 'y' lengths d...
2013 Apr 03
1
prop.test vs hand calculated confidence interval
Hi, This code: n=40 x=17 phat=x/n SE=sqrt(phat*(1-phat)/n) zstar=qnorm(0.995) E=zstar*SE phat+c(-E,E) Gives this result: [1] 0.2236668 0.6263332 The TI Graphing calculator gives the same result. Whereas this test: prop.test(x,n,conf.level=0.99,correct=FALSE) Give this result: 0.2489036 0.6224374 I'm wondering why there is a difference. D. -- Vie...
2009 Apr 23
2
Two 3D cones in one graph
...[2])) xstar<-seq(-astar,astar,len=50) ystar<-seq(-bstar,bstar,len=50) g<-expand.grid(x=xstar,y=ystar) p1<-2*g$x*mu[1]/a**2+2*g$y*mu[2]/b**2 p2<-(g$x**2/a**2+g$y**2/b**2) p3<-mu[1]**2/a**2+mu[2]**2/b**2-1 q<-(p1+sqrt(p1**2-4*p2*p3))/(2*p2) z<-sqrt(1-(q*g$x)**2-(q*g$y)**2) zstar<-(z/q) ind0<-!(q<1) g$z<-zstar sc<-matrix(c(rep(c(-1,-1,-1),sum(ind0))),nrow=sum(ind0),byrow=TRUE) gstar<-rbind(g[ind0,],sc*g[ind0,]) group<-c(rep(1,nrow(gstar)/2),rep(2,nrow(gstar)/2)) gstar$group<-group wireframe(z~x*y|group,gstar,colorkey=TRUE,drape=TRUE, scales=list(...