search for: zs_pool_stat_create

Displaying 7 results from an estimated 7 matches for "zs_pool_stat_create".

2016 Mar 11
0
[PATCH v1 07/19] zsmalloc: reordering function parameter
...e changed, 26 insertions(+), 24 deletions(-) diff --git a/mm/zsmalloc.c b/mm/zsmalloc.c index 3c82011cc405..156edf909046 100644 --- a/mm/zsmalloc.c +++ b/mm/zsmalloc.c @@ -564,7 +564,7 @@ static const struct file_operations zs_stat_size_ops = { .release = single_release, }; -static int zs_pool_stat_create(const char *name, struct zs_pool *pool) +static int zs_pool_stat_create(struct zs_pool *pool, const char *name) { struct dentry *entry; @@ -604,7 +604,7 @@ static void __exit zs_stat_exit(void) { } -static inline int zs_pool_stat_create(const char *name, struct zs_pool *pool) +static inlin...
2016 Mar 11
31
[PATCH v1 00/19] Support non-lru page migration
Recently, I got many reports about perfermance degradation in embedded system(Android mobile phone, webOS TV and so on) and failed to fork easily. The problem was fragmentation caused by zram and GPU driver pages. Their pages cannot be migrated so compaction cannot work well, either so reclaimer ends up shrinking all of working set pages. It made system very slow and even to fail to fork easily.
2016 Mar 11
31
[PATCH v1 00/19] Support non-lru page migration
Recently, I got many reports about perfermance degradation in embedded system(Android mobile phone, webOS TV and so on) and failed to fork easily. The problem was fragmentation caused by zram and GPU driver pages. Their pages cannot be migrated so compaction cannot work well, either so reclaimer ends up shrinking all of working set pages. It made system very slow and even to fail to fork easily.
2016 Mar 21
22
[PATCH v2 00/18] Support non-lru page migration
Recently, I got many reports about perfermance degradation in embedded system(Android mobile phone, webOS TV and so on) and failed to fork easily. The problem was fragmentation caused by zram and GPU driver pages. Their pages cannot be migrated so compaction cannot work well, either so reclaimer ends up shrinking all of working set pages. It made system very slow and even to fail to fork easily.
2016 Mar 21
22
[PATCH v2 00/18] Support non-lru page migration
Recently, I got many reports about perfermance degradation in embedded system(Android mobile phone, webOS TV and so on) and failed to fork easily. The problem was fragmentation caused by zram and GPU driver pages. Their pages cannot be migrated so compaction cannot work well, either so reclaimer ends up shrinking all of working set pages. It made system very slow and even to fail to fork easily.
2016 Mar 30
33
[PATCH v3 00/16] Support non-lru page migration
Recently, I got many reports about perfermance degradation in embedded system(Android mobile phone, webOS TV and so on) and failed to fork easily. The problem was fragmentation caused by zram and GPU driver pages. Their pages cannot be migrated so compaction cannot work well, either so reclaimer ends up shrinking all of working set pages. It made system very slow and even to fail to fork easily.
2016 Mar 30
33
[PATCH v3 00/16] Support non-lru page migration
Recently, I got many reports about perfermance degradation in embedded system(Android mobile phone, webOS TV and so on) and failed to fork easily. The problem was fragmentation caused by zram and GPU driver pages. Their pages cannot be migrated so compaction cannot work well, either so reclaimer ends up shrinking all of working set pages. It made system very slow and even to fail to fork easily.