Displaying 2 results from an estimated 2 matches for "z1_".
Did you mean:
z1
2011 Jan 03
1
Greetings. I have a question with mixed beta regression model in nlme.
...e model are:
Suppose that:*
*j in {1, ..., J}* *(level 1)*
*i in {1, ..., n_j}* *(level 2)*
*y_{ij} ~ Beta(mu_{ij} * phi_{ij}; (1 - mu_{ij}) * phi_{ij})
y_{ij} = mu_{ij} + w_{ij}
*
*with*
*logit(mu_{ij}) = Beta_{0i} + Beta_{1i} * x1_{ij} + b2 * x2_{ij}
log(phi_{ij}) = Gamma_{0i} + Gamma_{1i} * z1_{ij} + c2 * z2_{ij}
*
*Beta_{0i} = b_0 + u_{0i}
Beta_{1i} = b_1 + u_{1i}
Gamma_{0i} = c_0 + v_{0i}
Gamma_{1i} = c_1 + v_{1i}
*
*The vector* *(u_{0i}, u_{1i})'* *has normal distribution with mean*
*(0, 0)'* *and covariance matrix*
*sigma_{00} sigma_{01}
sigma_{10} sigma_{11}
*
*The vector* *...
2011 Jan 03
0
Greetings. I have a question with mixed beta regression model in nlme (corrected version).
...ulation.
**
Suppose that:*
*j in {1, ..., J}* *(level 1)*
*i in {1, ..., n_j}* *(level 2)*
*y_{ij} ~ Beta(mu_{ij} * phi_{ij}; (1 - mu_{ij}) * phi_{ij})
y_{ij} = mu_{ij} + w_{ij}
*
*with*
*logit(mu_{ij}) = Beta_{0i} + Beta_{1i} * x1_{ij} + b_2 * x2_{ij}
log(phi_{ij}) = Gamma_{0i} + Gamma_{1i} * z1_{ij} + c_2 * z2_{ij}
*
*Beta_{0i} = b_0 + u_{0i}
Beta_{1i} = b_1 + u_{1i}
Gamma_{0i} = c_0 + v_{0i}
Gamma_{1i} = c_1 + v_{1i}
*
*The vector* *(u_{0i}, u_{1i})'* *has normal distribution with mean*
*(0, 0)'* *and covariance matrix*
*sigma_{00} sigma_{01}
sigma_{10} sigma_{11}
*
*The vector*...