search for: valerror

Displaying 7 results from an estimated 7 matches for "valerror".

Did you mean: evalerror
2018 Feb 26
3
Random Seed Location
...e = ?raw?) > pred <- ifelse(prob[, 2] >= 0.3, 1, 0) F. Use the confusionMatrix function in the caret package to output the confusion matrix. > confMtr <- confusionMatrix(pred,unlist(InvestTechVal[, 3]),mode = ?everything?, positive = ?1?) > accuracy <- confMtr$overall[1] > valError <- 1 ? accuracy > confMtr G. Classify the 18 new (out-of-sample) readers using the following code. > prob <- predict(model, newdata = outOfSample, type = ?raw?) > pred <- ifelse(prob[, 2] >= 0.3, 1, 0) > cbind(pred, prob, outOfSample[, -3]) --- This email has been c...
2018 Feb 27
0
Random Seed Location
...>= 0.3, 1, 0) > > F. Use the confusionMatrix function in the caret package to output the > confusion matrix. > > > confMtr <- confusionMatrix(pred,unlist(InvestTechVal[, 3]),mode = > ?everything?, positive = ?1?) > > accuracy <- confMtr$overall[1] > > valError <- 1 ? accuracy > > confMtr > > G. Classify the 18 new (out-of-sample) readers using the following > code. > > prob <- predict(model, newdata = outOfSample, type = ?raw?) > > pred <- ifelse(prob[, 2] >= 0.3, 1, 0) > > cbind(pred, prob, outOfSample[,...
2018 Mar 04
3
Random Seed Location
...0.3, 1, 0) > > F. Use the confusionMatrix function in the caret package to output the > confusion matrix. > >> confMtr <- confusionMatrix(pred,unlist(InvestTechVal[, 3]),mode = > ?everything?, positive = ?1?) >> accuracy <- confMtr$overall[1] >> valError <- 1 ? accuracy >> confMtr > > G. Classify the 18 new (out-of-sample) readers using the following > code. >> prob <- predict(model, newdata = outOfSample, type = ?raw?) >> pred <- ifelse(prob[, 2] >= 0.3, 1, 0) >> cbind(pred, prob, outOfSampl...
2018 Mar 04
0
Random Seed Location
...F. Use the confusionMatrix function in the caret package to output the > > confusion matrix. > > > >> confMtr <- confusionMatrix(pred,unlist(InvestTechVal[, 3]),mode = > > ?everything?, positive = ?1?) > >> accuracy <- confMtr$overall[1] > >> valError <- 1 ? accuracy > >> confMtr > > > > G. Classify the 18 new (out-of-sample) readers using the following > > code. > >> prob <- predict(model, newdata = outOfSample, type = ?raw?) > >> pred <- ifelse(prob[, 2] >= 0.3, 1, 0) > >>...
2018 Mar 04
2
Random Seed Location
...onMatrix function in the caret package to output the >> > confusion matrix. >> > >> >> confMtr <- confusionMatrix(pred,unlist(InvestTechVal[, 3]),mode = >> > ?everything?, positive = ?1?) >> >> accuracy <- confMtr$overall[1] >> >> valError <- 1 ? accuracy >> >> confMtr >> > >> > G. Classify the 18 new (out-of-sample) readers using the following >> > code. >> >> prob <- predict(model, newdata = outOfSample, type = ?raw?) >> >> pred <- ifelse(prob[, 2] >= 0...
2018 Mar 04
0
Random Seed Location
...in the caret package to output the >>>> confusion matrix. >>>> >>>>> confMtr <- confusionMatrix(pred,unlist(InvestTechVal[, 3]),mode = >>>> ?everything?, positive = ?1?) >>>>> accuracy <- confMtr$overall[1] >>>>> valError <- 1 ? accuracy >>>>> confMtr >>>> >>>> G. Classify the 18 new (out-of-sample) readers using the following >>>> code. >>>>> prob <- predict(model, newdata = outOfSample, type = ?raw?) >>>>> pred <- ifelse...
2018 Mar 05
1
Random Seed Location
...ix. >>>>> >>>>>> confMtr <- confusionMatrix(pred,unlist(InvestTechVal[, 3]),mode = >>>>> >>>>> ?everything?, positive = ?1?) >>>>>> >>>>>> accuracy <- confMtr$overall[1] >>>>>> valError <- 1 ? accuracy >>>>>> confMtr >>>>> >>>>> >>>>> G. Classify the 18 new (out-of-sample) readers using the following >>>>> code. >>>>>> >>>>>> prob <- predict(model, newdata =...