Displaying 20 results from an estimated 21 matches for "unidimensional".
2012 May 21
1
simple, unidimensional heat map
I was wondering if someone could point in the direction of a package
that could generate not heatmaps, but something like a unidimensional
heat map.
I might be mistaken, but it seems like image and heatmap are an
overkill for such a simple task.
For example, if I have a data frame:
x<-data.frame(myname=paste("value",1:10,sep=""),a=1:10,b=sample(1:10,10,replace=T))
I'd like to create a chart (it's more...
2005 Oct 03
1
ML optimization question--unidimensional unfolding scaling
I'm trying to put together an R routine to conduct unidimensional unfolding
scaling analysis using maximum likelihood. My problem is that ML
optimization will get stuck at latent scale points that are far from
optimal. The point optimizes on one of the observed variables but not
others and for ML to move away from this 'local optimum', it has to move in...
2009 Apr 20
0
Major revision of plink for separate calibration IRT-based linking
An updated version of the package plink has been uploaded to CRAN. This is a
major revision that now includes multidimensional models and methods.
plink is a package for conducting unidimensional and multidimensional
IRT-based test linking using separate calibration methods for multiple
groups for single-format or mixed-format common items. The package supports
sixteen IRT models and eleven calibration methods.
Dichotomous Models:
1PL, 2PL, 3PL, M1PL, M2PL, M3PL
Polytomous Models:
-Graded...
2009 Apr 20
0
Major revision of plink for separate calibration IRT-based linking
An updated version of the package plink has been uploaded to CRAN. This is a
major revision that now includes multidimensional models and methods.
plink is a package for conducting unidimensional and multidimensional
IRT-based test linking using separate calibration methods for multiple
groups for single-format or mixed-format common items. The package supports
sixteen IRT models and eleven calibration methods.
Dichotomous Models:
1PL, 2PL, 3PL, M1PL, M2PL, M3PL
Polytomous Models:
-Graded...
2012 Mar 21
1
small scales in fwdmsa
...xt step of the forward search. I don't understand
what I can do to remedy this error.
The data are dichotomized (1,0) respsonses from a multiple-choice exam that
150 students have completed. If I run the entire test (37 items) , the
fwd.msa algorithm works fine. However, the entire test is not
unidimensional, so I want to perform separate analyses with the several
unidimensional scales comprised by the entire test. Yet when I select those
4-5 item scales, I run into this error.
Any ideas how to proceed?
The data are 150 responses to a 37 item test. For the first 15 items, they
look like this (the va...
2006 Jan 20
2
big difference in estimate between dmvnorm and dnorm, how come?
Dear R community,
I was trying to estimate density at point zero of a multivariate
distribution (9 dimensions) and for this I was using a multinormal
approximation and the function dmvnorm , gtools package.
To have a sense of the error I tried to look the mismatch between a
unidimensional version of my distribution and estimate density at
point zero with function density, dmvnorm and dnorm.
At my big surprise dmvnorm and dnorm give very different result and
dmvnorm match even better the theoritical distribution than the
function density. How come?
#sampling from triangular distr...
2005 Nov 03
1
ML optimization question--unidimensional unfolding scalin g
Alternatively, just type debug(optim) before using it, then step through it
by hitting enter repeatedly...
When you're done, do undebug(optim).
Andy
> From: Spencer Graves
>
> Have you looked at the code for "optim"? If you
> execute "optim", it
> will list the code. You can copy that into a script file and walk
> through it line by line to
2008 Oct 21
4
subscripting a one column matrix drops dimension
...:30])
num [1:11] -0.315 -0.693 -0.771 0.448 0.204 ...
This breaks:
> cov(x)
[,1]
[1,] 0.9600812
> cov(x[20:30])
Erreur dans cov(x[20:30]) : fournir 'x' et 'y' ou bien 'x' en matrice
And this behavior is braking function clustIndex (when used with
unidimensional data),
from the package cclust, file Rindexes.R, lines 137-147:
ttww <- function(x, clsize, cluster)
{
n <- sum(clsize)
k <- length(clsize)
w<-0
tt <- cov(x)*n
for (l in 1:k)
w<- w+cov(x[cluster==l,])*clsize[l]...
2012 Nov 08
3
vectorized uni-root?
dear R experts--- I have (many) unidimensional root problems. think
loc.of.root <- uniroot( f= function(x,a) log( exp(a) + a) + a,
c(.,9e10), a=rnorm(1) ) $root
(for some coefficients a, there won't be a solution; for others, it
may exceed the domain. implied volatilities in various Black-Scholes
formulas and variant formulas are l...
2014 May 20
3
Curvas de densidad no parametricas
Estimados una consulta me encuentro graficando un histograma cuyos datos no
provienen de una distribución clásica como la normal exponenial, poisson,
etc, Lo que necesito es colocar una curva no paramétrica que permita
evidenciar el ajuste de los datos a esa curva ya que son muchos (alrededor
de 80000).
Muchas gracias
[[alternative HTML version deleted]]
2008 Jan 28
0
eRm: new version 0.9-6
..., loess, or kernel).
'ask': interactive turning over of plots can be switched off (only
useful if automated figure export is in effect,
e.g., when using Sweave).
- simulation module for 0-1 response matrices: sim.rasch() for Rasch
homogeneous data,
sim.2pl() for 2-PL data, sim.xdim() for unidimensionality violation, and
sim.locdep() for locally dependent item responses.
- package vignette "eRmvig" added.
Best,
Patrick
_______________________________________________
R-packages mailing list
R-packages at r-project.org
https://stat.ethz.ch/mailman/listinfo/r-packages
2002 Nov 07
0
OT : sensible analysis of censored rank data
...t is some sort of simulation/bootstrapping,
which should be straightforward enough if I use just the first rank to
denote "most important"... but that seems to ignore the information
contained in the lower ranks.
My next thought is that I should attempt some form of ordination ..
some unidimensional scaling using perhaps a 1 dimensional
cmdscale solution .. this rests on the ability to build a suitable
distance matrix, which I think is possible. Or maybe a form of
Thurstone scaling. If I wrapped this in the function called by boot ..
a unique ordination solution for each sample draw, mappe...
2008 Jan 28
0
eRm: new version 0.9-6
..., loess, or kernel).
'ask': interactive turning over of plots can be switched off (only
useful if automated figure export is in effect,
e.g., when using Sweave).
- simulation module for 0-1 response matrices: sim.rasch() for Rasch
homogeneous data,
sim.2pl() for 2-PL data, sim.xdim() for unidimensionality violation, and
sim.locdep() for locally dependent item responses.
- package vignette "eRmvig" added.
Best,
Patrick
_______________________________________________
R-packages mailing list
R-packages at r-project.org
https://stat.ethz.ch/mailman/listinfo/r-packages
2012 Jul 26
0
PCM() non-convergence problem: how to get diagnostics?
...items in 43 individuals with possible scores 0,1,2,3.
Attempting either a PCM or RSM model fit simply hangs - no error messages but no return to command prompt and a continuously spinning "work in progress" indicator.
The scores are from an instrument whose relevant psychometrics (e.g unidimensionality) have been established in other clinical populations: I'm studying a new disease group. I strongly suspect the problem relates to undesirable properties of the dataset: a significant missing data rate (about 20%) and a rather uneven distribution amongst the possible scores with relative pauc...
2007 May 08
0
package ltm -- version 0.8-0
...de:
* The new functions person.fit() and item.fit() compute p-values for
person- and item-fit statistics for IRT models for dichotomous data.
The `simulate.p.value' argument enables the computation of p-values
based on a Monte Carlo procedure.
* The new function unidimTest() checks the unidimensionality
assumption for dichotomous data IRT models, using a Modified Parallel
Analysis.
* The new function testEquatingData() prepares data-sets for test
equating by common items. In particular, two types of common item
equating are included: alternate form equating (where common and
unique item...
2007 May 08
0
package ltm -- version 0.8-0
...de:
* The new functions person.fit() and item.fit() compute p-values for
person- and item-fit statistics for IRT models for dichotomous data.
The `simulate.p.value' argument enables the computation of p-values
based on a Monte Carlo procedure.
* The new function unidimTest() checks the unidimensionality
assumption for dichotomous data IRT models, using a Modified Parallel
Analysis.
* The new function testEquatingData() prepares data-sets for test
equating by common items. In particular, two types of common item
equating are included: alternate form equating (where common and
unique item...
2007 Sep 05
0
New R package plink for separate calibration IRT linking
The first version of the package plink has been uploaded to CRAN.
plink is a package for conducting unidimensional IRT scaling and chain
linking for multiple groups for single-format or mixed-format common
items. The package supports eight IRT models and four calibration
methods.
Dichotomous Models:
1PL, 2PL, 3PL
Polytomous Models:
-Graded response model
-Partial credit model
-Generalized partial credit model...
2007 Sep 05
0
New R package plink for separate calibration IRT linking
The first version of the package plink has been uploaded to CRAN.
plink is a package for conducting unidimensional IRT scaling and chain
linking for multiple groups for single-format or mixed-format common
items. The package supports eight IRT models and four calibration
methods.
Dichotomous Models:
1PL, 2PL, 3PL
Polytomous Models:
-Graded response model
-Partial credit model
-Generalized partial credit model...
2014 Sep 30
3
Clasificacion de individuos
...aro? XD
Un saludo,
Isidro
De: Olivier Nuñez [mailto:onunez en unex.es]
Enviado el: martes, 30 de septiembre de 2014 15:23
Para: jluis gilsanz
CC: ihidalgo en jccm.es; r-help-es en r-project.org
Asunto: Re: [R-es] Clasificacion de individuos
Me parece que tu ordenación es esencialmente unidimensional.
Por lo tanto, en algún momento tendrás que considerar una combinación de tus tres variables.
Ignoro el contexto, pero la ponderación de cada una debería ser conforme a los criterios de la empresa que evalúa al personal.
Una vez tengas tu variable podrás definir los tres grupos con la función c...
2014 Sep 30
2
Clasificacion de individuos
Hola Isidro:
También había sopesado esa posibilidad pero por una parte me parecía
"complicar" el proceso y por otra tengo mis dudas acerca de que en que el
análisis cluster pueda prescindir de la hipótesis de Normalidad en las dos
variables "raras" que tengo.
De cualquier forma muchas gracias por tu idea.
Un saludo
{In Archive} RE: [R-es] Clasificacion de