Displaying 14 results from an estimated 14 matches for "tsdata".
Did you mean:
sdata
2014 Jan 08
0
Strange behaviour of `dlm` package
..., 22489054,
23442393, 24170736, 25308044,
25021560, 25724331, 25990336, 26602038,
27292250, 28891954, 29659700,
31533579, 32513666, 33628559, 34494451))
plot(hotann, ylab="Annual hotel bookings")
# Analysis with log data
tsdata <- log(hotann)
buildfun <- function (x) {
dlmModPoly(order = 2, dV = exp(x[1]), dW = c(0,exp(x[2])))
}
fit <- dlmMLE(y=tsdata, parm=c(0,0), build=buildfun)
# Warning: a numerically singular 'V' has been slightly perturbed to make it
nonsingular
fit$conv
dlmTsdata <- buildfu...
2005 Jun 14
1
using forecast() in dse2 with an ARMA model having a trend component
....9850, 105.9697,
105.9604, 105.9509,
105.9430, 105.9357, 105.9314, 105.9333, 105.9420,
105.9640, 105.9994,
106.0290, 106.0855, 106.1265, 106.1197, 106.1245,
106.1893, 106.2118,
106.1503, 106.0883, 106.0511, 106.0194, 106.0221)
# Set TSdata object
arma.fit.TSdata <- TSdata(input = arma.fit.input, output =
arma.fit.output)
# Fit the model
arma.model.without.trend <- estVARXls(arma.fit.TSdata, max.lag=1,
trend=F)
arma.model.with.trend <- estVARXls(arma.fit.TSdata, max.lag=1,
trend=T)
# Apply the model for the test period
a...
2006 Jan 03
2
KALMAN FILTER HELP
Hi All,
Currently I'm using DSE package for Kalman Filtering. I have a dataset
of one dependent variable and seven other independent variables. I'm
confused at one point. How to declare the input-output series using
TSdata command. Because the given example at page 37 showing some error.
rain <- matrix(rnorm(86*17), 86,17)
radar <- matrix(rnorm(86*5), 86,5)
mydata <- TSdata(input=radar, output=rain)
input data:
Error: evaluation nested too deeply: infinite recursion /
options(expressions=)?...
2006 Jul 06
2
KPSS test
...5 0.025 0.01
0.119 0.146 0.176 0.216
----
Lag truncation parameter: 1
CONCLUSION: Reject Ho at 0.05 sig level - Level Stationary
Fail to reject Ho at 0.05 sig level - Trend Stationary
> kpss.test(df,null = c("Trend"))
KPSS Test for Trend Stationarity
data: tsdata[, 6]
KPSS Trend = 0.1298, Truncation lag parameter = 1, p-value = 0.07999
CONCLUSION: Fail to reject Ho - Trend Stationary as p-value < sig. level (0.05)
> kpss.test(df,null = c("Level"))
KPSS Test for Level Stationarity
data: tsdata[, 6]
KPSS Level = 1.0891,...
2006 Jun 26
2
converting to time series object : ts - package:stats
...sing ts function in stats package. My dataset is as follows:
>df
[1] 11.08 7.08 7.08 6.08 6.08 6.08 23.08 32.08 8.08 11.08 6.08 13.08 13.83 16.83 19.83 8.83 20.83 17.83
[19] 9.83 20.83 10.83 12.83 15.83 11.83
I converted this into time series object as follows
>tsdata <- ts((df),frequency = 12, start = c(1999, 1))
The resulting time series is as follows:
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1999 2 15 15 14 14 14 12 13 16 2 14 5
2000 6 8 10 17 11 9 18 11 1 4 7 3
I am unable to understand why the va...
2008 Sep 03
1
how to reduce stress value in isoMDS?
I apply isoMDS to my data, but the result turns out to be bad as the stress
value stays around 31! Yeah, 31 ,not 3.1... I don't know if I ignore
something before recall isoMDS.
My code as follow:
m <- read.table("e:/tsdata.txt",header=T,sep=",")
article_number <- ts(m, start = 2004,end=2008, frequency = 1
,names=colnames(m))
jpeg(filename="e:/tsmap.gif",width = 480, height = 480, units = "px",
pointsize = 12, quality = 75, bg = "white", res = NA, restoreConsole = TRUE)...
2017 Sep 15
0
require help
...they take only monthly observations.
>
> 'data.frame': 30 obs. of 4 variables:
> $ year: int 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 ...
> $ cnsm: num 174 175 175 172 173 ...
> $ incm: num 53.4 53.7 53.5 53.2 53.3 ...
It shouldn't be difficult.
Example:
tsdata <- data.frame(year=c(2000,2002,2003), x=c(1,2,3),y=c(10,11,12))
xy.ts <- as.ts(tsdata)
library(zoo)
as.zoo(xy.ts)
Berend Hasselman
> $ wlth: num 60.3 60.5 60.2 60.1 60.7 ...
> --
> Yadawananda Neog
> Research Scholar
> Department of Economics
> Banaras Hindu Universit...
2011 Nov 22
1
Varma models in the dse package
Hi,
I tried to run the VARMA model in the dse package. I specified a model:
> arma
A(L) =
1+0.244L1 0+0.05L1
0-0.325L1 1-0.234L1
B(L) =
1-0.277L1 0+0.211L1
0-0.206L1 1+0.238L1
and have a TSdata object:
> dfdata
output data:
Series 1 Series 2
1 "difex2" "difem2"
but I get this warning message:
> estMaxLik(arma, dfdata)
Error in l.ARMA(setArrays(Shape, coefficients = coefficients), data, result
= "like", :
NA/NaN/Inf in foreign function call (arg 1...
2005 Dec 23
1
dse package problems
...masked from package:stats :
acf simulate
> library("dse2")
>
> fileName <- system.file("otherdata", "eg1.dat", package="dse1")
> eg1.DSE.data <- t(matrix(scan(fileName),5, 364))[, 2:5]
Read 1820 items
>
> eg1.DSE.data <- TSdata(input= eg1.DSE.data[,1,drop = F], output=
+ eg1.DSE.data[, 2:4, drop = F])
>
> eg1.DSE.data # this is the troublemaking command
input data:
Error: evaluation nested too deeply: infinite recursion / options(expressions=)?
>
####################################
# Second Example
rary("...
2017 Sep 15
7
require help
hello to all. I am working on macroeconomic data series of India, which in
a yearly basis. I am unable to convert my data frame into time series.
kindly help me.
also using zoo and xts packages. but they take only monthly observations.
'data.frame': 30 obs. of 4 variables:
$ year: int 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 ...
$ cnsm: num 174 175 175 172 173 ...
$ incm:
2012 May 06
3
PLot a matrix
Hi,
I want to plot this matrix (I attach the data), it is suposed that each
column is a different time series.
If I do
g<-read.table("dataADF.txt", header=F)
and
plot(g[,1],type="l")
it plots the first column plot if I want in a unique graph each colums of
dataA, all in one. How should I proceed?There is a direct pre-defined code?
And If I wanted a plot by each
2009 Nov 27
0
VAR forecasts and out-of-sample prediction
...tember 2009. In-sample period January 1984 to December 2003,
out-of-sample January 2004 to September 2009. This is what I have done at
the moment
betas<-read.table("C:\\Users\\Manta\\Desktop\\betas.txt",header=T,dec=",")
BETA<-ts(betas,start=(1984),frequency=12)
BETAS<-TSdata(output=BETA)
VAR1<-estVARXls(window(BETAS,end=c(2003,12)),max.lag=1)
pr<-forecast(VAR1,horizon=1)
pr3<-forecast(VAR1,horizon=3)
pr12<-forecast(VAR1,horizon=12)
and the model is estimated correctly (same estimates as found using other
softwares)
Then the tricky part: I want to estimate...
2009 Nov 16
1
ARMAX model fitting with arima
I am trying to understand how to fit an ARMAX model with the arima
function from the stats package. I tried the simple data below, where
the time series (vector x) is generated by filtering a step function
(vector u, the exogenous signal) through a lowpass filter with AR
coefficient equal to 0.8. The input gain is 0.3 and there is a 0.01
normal white noise added to the output:
x <- u
2011 Mar 04
3
Análisis de una serie temporal diaria
Hola a todos
Estoy tratando de analizaruna serie temporal con datos diarios de
temperaturas (40 años). He creado un objeto zoo (con ayuda de la lista,
gracias) sobre el que encuentro la regresión lineal. He probado también
a crear un objeto ts a partir del zoo. El problema que encuentro es que
nose puede aplicar la función stl para hallar la componente estacional y
la tendencia. Rdice que la