Displaying 4 results from an estimated 4 matches for "trainindex".
2011 Nov 30
1
glm step() fkt
...i have a question about the step() fkt. Is there a possibility to save the
last model generated from this method. I have a loop and so i generate 100
different models with the step fkt and i want to know which model is the
most common.
CODE:
...
missStep -> numeric(100)
for (j in 1:100) {
trainindex <- sample(c(1:462),300)
train <- data[trainindex,]
test <- data[-trainindex,]
mod.step <- step(mod, direction="both",trace=T)
}
...
So i want to store each iteration the best model.
Thx in advanced people,
greetings
--
View this message in c...
2018 Apr 14
2
Efficient way to subset rows in R for dataset with 10^7 columns
I have a data.table with dimensions 100 by 10^7.
When I do
trainIndex <-
caret::createDataPartition(
df$status,
p = .9,
list = FALSE,
times = 1
)
outerTrain <- df[trainIndex]
outerTest <- df[-trainIndex]
Subsetting the rows of df takes over 20 minutes.
What is the best way to efficiently subset this?
Th...
2018 Apr 14
0
Efficient way to subset rows in R for dataset with 10^7 columns
...e 10^7 columns? That process is bound to be slow.
>>
>> On April 13, 2018 5:31:32 PM PDT, Jack Arnestad
><jackarnestad at gmail.com>
>> wrote:
>> >I have a data.table with dimensions 100 by 10^7.
>> >
>> >When I do
>> >
>> > trainIndex <-
>> > caret::createDataPartition(
>> > df$status,
>> > p = .9,
>> > list = FALSE,
>> > times = 1
>> > )
>> > outerTrain <- df[trainIndex]
>> > outerTest <- df[-trainIndex]...
2013 Jan 08
0
bagging SVM Ensemble
...brary(e1071)
library(MASS)
dataset <- read.csv("E:/thesis/SVM/hepatitis data csv.csv",header=T,sep=";")
attach(dataset)
index <- 1:nrow(dataset)
testindex <- sample(index, trunc(length(index)*30/100))
testset <- dataset[testindex,]
trainset <- dataset[-testindex,]
trainindex <- sample(index, trunc(length(index)*70/100))
tuned <- tune.svm(class~., data = trainset, gamma = 10^(-6:-1), cost = 10^(-1:1))
cc <- as.numeric(tuned$best.parameters[2])
gg <- as.numeric(tuned$best.parameters[1])
modelolin <- svm(class ~ ., trainset, type = "C-classification&qu...