search for: trainclasses

Displaying 4 results from an estimated 4 matches for "trainclasses".

Did you mean: trainclass
2011 May 28
0
how to train ksvm with spectral kernel (kernlab) in caret?
...train function from the caret package to train a svm with a spectral kernel from the kernlab package. Sadly a svm with spectral kernel is not among the many methods in caret... using caret to train svmRadial: ------------------ library(caret) library(kernlab) data(iris) TrainData<- iris[,1:4] TrainClasses<- iris[,5] set.seed(2) fitControl$summaryFunction<- Rand svmNew<- train(TrainData, TrainClasses, method = "svmRadial", preProcess = c("center", "scale"), metric = "cRand", tuneLength = 4) svmNew ------------------- here is an example on h...
2011 May 12
2
Can ROC be used as a metric for optimal model selection for randomForest?
Dear all, I am using the "caret" Package for predictors selection with a randomForest model. The following is the train function: rfFit<- train(x=trainRatios, y=trainClass, method="rf", importance = TRUE, do.trace = 100, keep.inbag = TRUE, tuneGrid = grid, trControl=bootControl, scale = TRUE, metric = "ROC") I wanted to use ROC as the metric for variable
2009 Jan 15
2
problems with extractPrediction in package caret
Hi list, I´m working on a predictive modeling task using the caret package. I found the best model parameters using the train() and trainControl() command. Now I want to evaluate my model and make predictions on a test dataset. I tried to follow the instructions in the manual and the vignettes but unfortunately I´m getting an error message I can`t figure out. Here is my code: rfControl <-
2012 Nov 23
1
caret train and trainControl
I am used to packages like e1071 where you have a tune step and then pass your tunings to train. It seems with caret, tuning and training are both handled by train. I am using train and trainControl to find my hyper parameters like so: MyTrainControl=trainControl( method = "cv", number=5, returnResamp = "all", classProbs = TRUE ) rbfSVM <- train(label~., data =