Displaying 2 results from an estimated 2 matches for "tlat".
Did you mean:
that
2018 Mar 28
0
coxme in R underestimates variance of random effect, when random effect is on observation level
..., size=N, replace=TRUE, prob=rep(1/M, M))
# Create vector of r.e effects
re.effect <- rnorm(M,0,sigma)
# Now create a vector which assigns the re.effect depending on the group
re.group.effect <- re.effect[re.group]
# Weibull latent event times
v <- runif(n=N)
Tlat <- round((- log(v) / (lambda * exp(x1 * beta1 + x2 * beta2 + x3 * beta3 + x4 * beta4 + re.group.effect)))^(1 / rho))
# censoring times
#C <-rep(100000,N)
C <- rexp(n=N, rate=rateC)
# follow-up times and event indicators
time <- pmin(Tlat, C)
#status <- as.nu...
2018 Apr 04
1
parfm unable to fit models when hazard rate is small
...e --> N Bernoulli trials
x1 <- sample(x=c(0, 1), size=N, replace=TRUE, prob=c(0.5, 0.5))
# Now create random effect stuff
# Create one vector of length N, all drawn from same normal distribution
rand.effect <- rnorm(N,0,sigma)
# Weibull latent event times
v <- runif(n=N)
Tlat <- round((- log(v) / (lambda * exp(x1 * beta1 + rand.effect)))^(1 / rho))
multiplier = exp(x1 * beta1 + rand.effect)
haz=lambda * exp(x1 * beta1 + rand.effect)
# censoring times
#C <-rep(100000,N)
C <- rexp(n=N, rate=rateC)
# follow-up times and event indicators
time <-...