search for: thislm

Displaying 4 results from an estimated 4 matches for "thislm".

2012 Dec 06
1
scope, lme, ns, nlme, splines
...string)). But is there not a more elegant solution? set.seed(5) junk<-data.frame(x=rnorm(100)) junk$y<-junk$x + rnorm(nrow(junk)) junk$idvar<- factor(sample(LETTERS[1:10], size=nrow(junk), replace=TRUE)) library("nlme") library(splines) fitfunction<-function(splineDF=1) { thislm<-lm( y ~ ns(x, df=splineDF), data= junk) thislm cat("finished thislm\n") thislme<-lme( fixed= y ~ ns(x, df=splineDF) , random= ~ 1 | idvar , data= junk) thislme } fitfunction() KLUDGEfit<-function(splineDF=2) { thislm<-lm( y ~ ns(x, df=splineDF), data= junk...
2004 Nov 30
4
adding regression curve to xyplot
...2 33.89501 36.74620 As expected, predict gives two values. But inside xyplot() predict gives 300 values: > xyplot(t~s|factor(lonLabels[whichLon100])*factor(latLabels[whichLat100]), + data=P100,pch=".", + panel=function(x,y,...){panel.xyplot(x,y,...) + thislm <- lm(x~y) + print(thislm) + newt <- range(P100$t) + print(newt) + news <- as.vector(predict(thislm,newdata=data.frame(t=newt))) + print(news) + llin...
2009 Nov 11
1
loop through variable names
...) inside the loop. For instance: thesevars<-names(environmental) environmental$ToyOutcome<-rnorm(nrow(environmental)) tableOfResults<-data.frame(var=thesevars) tableOfResults$Beta<- NA rownames(tableOfResults)<-thesevars for( thisvar in thesevars) { thiscommand<- paste("thislm <- lm( ToyOutcome ~ ", thisvar, ", data=environmental)") eval(parse(text=thiscommand)) tableOfResults[thisvar, "Beta"] <- coef(thislm)[thisvar] } print(tableOfResults) Note that it's not always as simple a task as in this example. Within the loop, I might fi...
2007 Jan 26
1
bootstrap bca confidence intervals for large number of statistics in one model; library("boot")
...alues at 50 levels of the predictor. set.seed(1234567) x<-runif(150) y<-2/3 + pi * x^2 + runif(length(x))/2 plot(x,y) DAT<-data.frame(x,y) NEWDATA<-data.frame(x=seq(min(x), max(x), length=50)) library('boot') myfn<-function(data, whichrows) { TheseData<-data[whichrows,] thisLM<-lm( y~poly(x,2), data=TheseData) thisFit<-predict(thisLM, newdata=NEWDATA) c( coef(summary(thisLM))[,"Estimate"] , thisFit) } bootObj<-boot( data=DAT, statistic=myfn, R=1000 ) names(bootObj) dim(bootObj$t) sofar<-t(sapply( 1:ncol(bootObj$t), function(thiscolumn) boot.ci...