Displaying 8 results from an estimated 8 matches for "svmradial".
2012 Nov 23
1
caret train and trainControl
...by train.
I am using train and trainControl to find my hyper parameters like so:
MyTrainControl=trainControl(
method = "cv",
number=5,
returnResamp = "all",
classProbs = TRUE
)
rbfSVM <- train(label~., data = trainset,
method="svmRadial",
tuneGrid = expand.grid(.sigma=c(0.0118),.C=c(8,16,32,64,128)),
trControl=MyTrainControl,
fit = FALSE
)
Once this returns my ideal parameters, in this case Cost of 64, do I simply just re-run the whole process again, passing a grid only containi...
2013 Feb 12
1
caret: Errors with createGrid for rf (randomForest)
...eger specifying the number of points on the grid for
each tuning parameter.
data: the training data (only needed in the case where the 'method'
is 'cforest', 'earth', 'bagEarth', 'fda', 'bagFDA', 'rpart',
'svmRadial', 'pam', 'lars2', 'rf' or 'pls'). The outcome
should be in a column called '.outcome'.
and gives the following examples:
------------------------------------------------------------
createGrid("rda", 4)
createGrid("lm&...
2011 May 28
0
how to train ksvm with spectral kernel (kernlab) in caret?
Hello all,
I would like to use the train function from the caret package to
train a svm with a spectral kernel from the kernlab package. Sadly
a svm with spectral kernel is not among the many methods in caret...
using caret to train svmRadial:
------------------
library(caret)
library(kernlab)
data(iris)
TrainData<- iris[,1:4]
TrainClasses<- iris[,5]
set.seed(2)
fitControl$summaryFunction<- Rand
svmNew<- train(TrainData, TrainClasses,
method = "svmRadial",
preProcess = c("center", "scale")...
2010 Mar 23
1
caret package, how can I deal with RFE+SVM wrong message?
...nd so on ,how can I
do? I have try RFE+SVM, also wrong message:> set.seed(1)
> svmProfile<-rfe(trx,try,sizes=c(1:3),
+ rfeControl=rfeControl(functions=caretFuncs,method="cv",
+ verbose=F,returnResamp="final",number=10),
+ method="svmRadial",tuneLength=5)
Fitting: sigma=0.009246713, C=0.1
Fitting: sigma=0.009246713, C=1
Fitting: sigma=0.009246713, C=10
Fitting: sigma=0.009246713, C=100
Fitting: sigma=0.009246713, C=1000
Error in rfeControl$functions$rank(fitObject, .x, y) :
need importance columns for each class
thank yo...
2012 Nov 29
1
Help with this error "kernlab class probability calculations failed; returning NAs"
...estindex,-1]
## TUNE caret / kernlab
set.seed(1)
MyTrainControl=trainControl(
method = "repeatedcv",
number=10,
repeats=5,
returnResamp = "all",
classProbs = TRUE
)
## MODEL
rbfSVM <- train(outcome~., data = trainset,
method="svmRadial",
preProc = c("scale"),
tuneLength = 10,
trControl=MyTrainControl,
fit = FALSE
)
There were 50 or more warnings (use warnings() to see the first 50)
> warnings()
Warning messages:
1: In train.default(x, y, weights = w, ....
2013 Nov 15
1
Inconsistent results between caret+kernlab versions
...elow).
Can anyone please shed any light on this?
Thanks very much!
### To replicate:
require(repmis) # For downloading from https
df <- source_data('https://dl.dropboxusercontent.com/u/47973221/data.csv', sep=',')
require(caret)
svm.m1 <- train(df[,-1],df[,1],method='svmRadial',metric='Kappa',tunelength=5,trControl=trainControl(method='repeatedcv', number=10, repeats=10, classProbs=TRUE))
svm.m1
sessionInfo()
### Results - R2.15.2
> svm.m1
1241 samples
7 predictors
10 classes: ?O27479?, ?O31403?, ?O32057?, ?O32059?, ?O32060?, ?O32078?, ?O320...
2013 Feb 10
1
Training with very few positives
...list = TRUE)
myCtrl <- trainControl(method = "boot", index = tmp, timingSamps = 2,
classProbs = TRUE, summaryFunction = twoClassSummary)
RFmodel <- train(X,Y,method='rf',trControl=myCtrl,tuneLength=1,
metric="ROC")
SVMmodel <- train(X,Y,method='svmRadial',trControl=myCtrl,tuneLength=3,
metric="ROC")
KNNmodel <- train(X,Y,method='knn',trControl=myCtrl,tuneLength=10,
metric="ROC")
NNmodel <- train(X,Y,method='nnet',trControl=myCtrl,tuneLength=3, trace
= FALSE, metric="ROC")
============...
2010 Mar 24
0
R-help ordinal regression
...VM, also wrong message:>
> set.seed(1)
> > svmProfile<-rfe(trx,try,sizes=c(1:3),
> +? ? ? ? ?
> ???rfeControl=rfeControl(functions=caretFuncs,method="cv",
> +? ? ? ? ?
> ???verbose=F,returnResamp="final",number=10),
> +? ? ? ? ?
> ???method="svmRadial",tuneLength=5)
> Fitting: sigma=0.009246713, C=0.1
> Fitting: sigma=0.009246713, C=1
> Fitting: sigma=0.009246713, C=10
> Fitting: sigma=0.009246713, C=100
> Fitting: sigma=0.009246713, C=1000
> Error in rfeControl$functions$rank(fitObject, .x, y) :
> ? need importan...