search for: supportvector

Displaying 4 results from an estimated 4 matches for "supportvector".

2007 Jul 11
2
RWeka control parameters classifiers interface
...ss" library(RWeka) # Example: no parameter influence mySMO =make_Weka_classifier(name="weka/classifiers/functions/SMO",class=NULL,handlers=list()); # Using control =Weka_control() m1 =mySMO(formula=class~.,data=data[,],control=Weka_control(K="weka.classifiers.functions.supportVector.PolyKernel",E=2)) m2 =mySMO(formula=class~.,data=data[,],control=Weka_control(K="weka.classifiers.functions.supportVector.PolyKernel",E=3)) m3 =mySMO(formula=class~.,data=data[,],control=c("K","weka.classifiers.functions.supportVector.PolyKernel","E&quot...
2007 Aug 01
1
RWeka cross-validation and Weka_control Parametrization
...w can one perform a cross validation, -say 10fold- for a given data set and given model ? 2.) Second question What is the correct syntax for the parametrization of e.g. Kernel classifiers interface m1 <- SMO(Species ~ ., data = iris, control = Weka_control(K="weka.classifiers.functions.supportVector.RBFKernel",G=0.1)) m2 <- SMO(Species ~ ., data = iris, control = Weka_control(K="weka.classifiers.functions.supportVector.RBFKernel",G=1.0)) > m1 SMO Kernel used: RBF kernel: K(x,y) = e^-(0.01* <x-y,x-y>^2) ## should be: RBF kernel: K(x,y) = e^-(0.1* &lt...
2003 Jul 03
1
S4 method and S3 method with same name: potentially dangerous?
...ict.smooth.spline" [15] "predict.smooth.spline.fit" > setClass("RSVMState", + representation ( + kernel = "character", + rho = "numeric", + supportVector = "matrix", + alpha = "numeric", + negGroup = "integer", + posGroup = "integer"), + prototype(kernel = new("character"), +...
2017 Sep 02
0
problem in testing data with e1071 package (SVM Multiclass)
...;,header =FALSE)>attach(train) >x <-subset(train,select=-V2) >y <-V2 >model <-svm(V2 ~.,data =train,probability=TRUE) >summary(model) Call:svm(formula =V2 ~.,data =train,probability =TRUE)Parameters:SVM-Type:C-classification SVM-Kernel:radial cost:1gamma:0.08333333Numberof SupportVectors:12(444)Numberof Classes:3Levels:maybe noyes >pred <-predict(model,x) >system.time(pred <-predict(model,x)) user system elapsed 000 >table(pred,y)y | |pred maybe noyes maybe 400no040yes 004>pred 123456789101112yes yes yes yes nonononomaybe maybe maybe maybe Levels:maybe noyes...