Displaying 14 results from an estimated 14 matches for "subjectid".
Did you mean:
subjected
2009 Jul 30
2
weight median by count for multiple records
Hello everyone,
I have a .csv file with the following format:
uniqueID SubjectID Distance_miles Tag
1 1001 5.5 3
2 1001 7 1
3 1001 6.5 1
4 1001 5 1
5...
2009 Aug 26
1
Within factor & random factor
...bject factor and location is
a within subject factor. So,
controls: 28
patients: 25 (unbalanced data set)
respone measure: X values (ranging 0 to 1)
fixed factor: control vs. patient (between subject factor)
random factor: location (level: A,B,C,D ;no order) (within subject factor)
random factor: subjectID 1-53
My data looks like this;
CorP X location subjectID
control 0.708 A 1
control 0.648 A 2
patient 0.638 C 3
control 0.547 D 4
patient 0.632 B 5
control 0.723 C 6
...........
I want to know
(a) if there is a significant difference between controls and patients
in X values.
(b) wher...
2003 Sep 16
2
gnls( ) question
...I am running gnls( )
24 separate times on separate data sets).
Much thanks in advance,
david paul
#Constructing Indicator Variables
indicator <- paste( "foo$X <- sapply(foo$subject.id,
FUN = function(x) if(x == X) 1 else 0)" )
indicator <- parse( text = indicator )[[1]]
subjectID.foo <- as.factor(as.character(unique(foo$animal.id)))
for(i in subjectID.foo)
{
INDICATOR <- do.call("substitute",
list(indicator, list(i = i,
X = as.character(subjectID.foo[i]))))
eval(INDICATOR)
}
foo$Overall.Effect <- rep(1,length(foo$dose.group))
2010 Dec 06
1
lattice: strip panel function question
...norm(5*2*4) + as.integer(factor(groups))
data <- data.frame(responses, time, groups, subjects)
Now I want to plot each subject in a separate panel:
library(lattice)
xyplot(responses~time|subjects*groups, data = data, aspect="xy")
but this introduces empty panels. I tried this:
data$subjectID <- factor(rep(1:4, 2*5))
xyplot(responses~time|subjectID*groups, data = data, aspect="xy")
This is what I want but now I don't have the correct subject id's. I
couldn't find a solution in the help of strip.default.
Does anyone has a solution to this?
Thanks in advance,...
2016 Jun 22
2
Ayuda sencilla (SQL)
...seguro me ahorre mucho tiempo. La opción que
se plante de primero d <- table(tips$day) y luego dim(d) me parece menos
eficiente y cómo que directamente sqldf("select count(distinct day) from
tips"), pero supongo que esos son gustos!
También son "cómodas" las líneas: aggregate(subjectid ~ cond, data = dat,
FUN = function(x) length(unique(x))) o bien tapply(a$subjectid, a$cond,
function(x) length(unique(x))), pero tienen algo de R que intuitivamente
nunca me sale... supongo que por no comprender cuándo corresponde el uso de
function(x).
?Adjunto una selección de mis datos en .csv p...
2016 Jun 22
2
Ayuda sencilla (SQL)
...ción que
>> se plante de primero d <- table(tips$day) y luego dim(d) me parece menos
>> eficiente y cómo que directamente sqldf("select count(distinct day) from
>> tips"), pero supongo que esos son gustos!
>> También son "cómodas" las líneas: aggregate(subjectid ~ cond, data = dat,
>> FUN = function(x) length(unique(x))) o bien tapply(a$subjectid, a$cond,
>> function(x) length(unique(x))), pero tienen algo de R que intuitivamente
>> nunca me sale... supongo que por no comprender cuándo corresponde el uso de
>> function(x).
>>...
2008 Sep 08
2
How to preserve date format while aggregating
Hi
I have a dataframe in which some subjects appear in more than one row. I
want to extract the subject-rows which have the minimum date per subject. I
tried the following aggregate function.
attach(dataframe.xy)
aggregate(Date,list(SubjectID),min)
Unfortunately, the format of the Date-column changes to numeric, when I'm
applying this function. How can I preserve the date format?
Thanks
Erich
2012 Mar 28
3
Connect lines in a dot plot on a subject-by-subject basis
I am trying to plot where data points from a give subject are connected by a line. Each subject is represented by a single row of data. Each subject can have
up to five observations. The first five columns of mydata give the time of observation, columns 6-10 give the values at each time point. Some subjects have
all data, some are missing values.
The code I wrote to draw the plot is listed below.
2004 Mar 23
2
Coefficients and standard errors in lme
...ixed factors have two levels each and I'd like to know
whether the relationship between y and x varies between levels of the
factors, and whether there are any interactions between these factors.
I've therefore setup the model as this:
lme.fit <- lme(y ~ x*A*B*C, data=df, random=~x | subjectID)
The contrasts are default ("contr.treatment" and "contr.poly"). As
usual, the summary provides the coefficients for the 'baseline' group.
The rest of coefficients correspond to *differences* and their standard
error with respect to this group. One can calculate the...
2016 Jun 22
2
Ayuda sencilla (SQL)
Hola
Necesito algo simple pero no logro resolverlo en R: contar elementos
distintos (unique) pero agrupados. En SQL sería: SELECT Camara,
count(DISTINCT(Laboratorio)) as Lab FROM [datos] GROUP BY Camara.
Puedo hacerlo para toda la matriz de datos
con length(unique(datos$Laboratorio)) pero no logro hacerlo agrupado por
una variable (factor) dada.
Estuve intentando con el paquete data.table pero me
2005 Aug 05
0
GAP pointer
I am trying to do a simple segregation analysis using the GAP package. I
have the documentation for pointer but I desperately need an example so
that I can see how to format the datfile and the jobfile. For each
individual, I have FamilyId, SubjectId, FatherId, MotherId, and
AffectedStatus (0/1). I would like to obtain the likelihood ratio
statistic for transmission.
I would greatly appreciate any help on this subject.
Best to all,
Julia Reid
2005 Aug 08
0
R-help Digest, Vol 30, Issue 6
...e:
> Subject: [R] GAP pointer
>
> I am trying to do a simple segregation analysis using the GAP package. I
> have the documentation for pointer but I desperately need an example so
> that I can see how to format the datfile and the jobfile. For each
> individual, I have FamilyId, SubjectId, FatherId, MotherId, and
> AffectedStatus (0/1). I would like to obtain the likelihood ratio
> statistic for transmission.
> I would greatly appreciate any help on this subject.
> Best to all,
> Julia Reid
>
I wouldn't use Pointer myself (there are lots of more recent packages...
2011 Aug 23
0
survival analysis of EEG data
...and interpret the coxph and related functions:
I have time-dependent covariates with several measurements per subject with
constant delta t. The covariates change in each time step.
I fitted the following model:
fit <- coxph(Surv(start, stop, event) ~ ratePO + rateC + BLamp + BLP80 +
cluster(subjectID), data=dat)
and get
n= 1081, number of events= 10
coef exp(coef) se(coef) robust se z
Pr(>|z|)
ratePO -0.50189 0.60539 0.25195 0.17696 -2.836 0.004565 **
BLamp -0.05340 0.94800 0.02877 0.01470 -3.632 0.000281 ***
rateC 0.82888 2.29076 0.38111...
2013 Oct 09
1
mixed model MANOVA? does it even exist?
Hi,
Sorry to bother you again.
I would like to estimate the effect of several categorical factors (two
between subjects and one within subjects) on two continuous dependent
variables that probably covary, with subjects as a random effect. *I want
to control for the covariance between those two DVs when estimating the
effects of the categorical predictors** on those two DVs*. The thing is, i