Displaying 4 results from an estimated 4 matches for "sobreajustan".
2018 Feb 19
3
gbm.step para clasificación no binaria
Hola de nuevo. Se me olvidaba la principal razón para utilizar
gbm.step del paquete dismo. Como sabéis, los boosted si sobreajustan
(a diferencia de los random forest o cualquier otro bootstrap) pero
gbm.step hace validación cruzada para determinar el nº óptimo de
árboles y evitarlo. Es fundamental.
La opción que me queda, Carlos, es hacerlo con gbm, pero muchas veces,
y usar el promedio.Vamos, hacer yo mismo un boot...
2018 Feb 19
3
gbm.step para clasificación no binaria
Gracias Carlos. Hasta donde yo entiendo si las hay:
El argumento family puede ser:
"gaussian" (for minimizing squared error); por lo que tiene que ser numérica
"bernoulli" (logistic regression for 0-1 out-comes); binaria por narices
"poisson" (count outcomes; requires the response to be a positive
integer); numérica también, pues.
La única podría ser
2018 Jan 22
2
Random Forests
Muchas gracias Carlos, como siempre.
Es raro que se me pasase. En su momento miré todos los argumentos del
RF, como hago siempre, pero ese lo había olvidado. La verdad es que
funcionaba estupendamente, pero me parecía extraño. Aunque dado que
los RF no sobreajustan, no hay problema con que sus árboles sean todo
lo grandes que quieras. Lo he testado con una base de datos externa y
explica un porcentaje de la varianza mayor del que esperaba. Mejor que
con un simple bagging y mucho mejor que con cualquier árbol o
regresión múltiple. Ahora estoy probando...
2018 Jan 20
2
Random Forests
Si, Carlos. Yo hago lo mismo, pero esos mismos numeritos salen enormes.
> treesize(RFfit)
[1] 4304 4302 4311 4319 4343 4298 4298 4311 4349 4327 4331 4317
4294 4321 4283 4362
[17] 4300 4330 4266 4331 4308 4352 4294 4315 4372 4349 4331 4347
4329 4348 4298 4335
[33] 4346 4396 4345 4313 4293 4276 4353 4272 4304 4325 4317 4336
4308 4351 4374 4324
[49] 4386 4359 4311 4346 4300