Displaying 10 results from an estimated 10 matches for "slope2".
Did you mean:
slope
2005 Jun 08
2
Robustness of Segmented Regression Contributed by Muggeo
...es:
Estimated Break-Point(s):
Est. St.Err
Mean.Vel 1.285 0.05258
1.652 0.01247
Est. St.Err. t value CI(95%).l
CI(95%).u
slope1 0.4248705 0.3027957 1.403159 -0.1685982 1.018339
slope2 2.3281445 0.3079903 7.559149 1.7244946 2.931794
slope3 9.5425516 0.7554035 12.632390 8.0619879 11.023115
Adjusted R-squared: 0.9924.
Result2:
Initial break points are 1.5 and 1.7. The estimated break points and slopes:
Estimated Break-Point(s):...
2010 Apr 08
2
Overfitting/Calibration plots (Statistics question)
This isn't a question about R, but I'm hoping someone will be willing
to help. I've been looking at calibration plots in multiple regression
(plotting observed response Y on the vertical axis versus predicted
response [Y hat] on the horizontal axis).
According to Frank Harrell's "Regression Modeling Strategies" book
(pp. 61-63), when making such a plot on new data
2005 Jan 20
1
Windows Front end-crash error
...80,400,80,80,80,80,400,80,80,80,80,400),4,4
)
mu2<-c(0,0,0)
LE<-8^2 #Linking Error
Sigma2<-diag(LE,3)
sample.size<-5000
N<-100 #Number of datasets
#Take a single draw from VL distribution
vl.error<-mvrnorm(n=N, mu2, Sigma2)
intercept1 <- 0
slope1 <- 0
intercept2 <- 0
slope2 <- 0
for(i in 1:N){
temp <- data.frame(ID=seq(1:sample.size),mvrnorm(n=sample.size,
mu,Sigma))
temp$X5 <- temp$X1
temp$X6 <- temp$X2 + vl.error[i,1]
temp$X7 <- temp$X3 + vl.error[i,2]
temp$X8 <- temp$X4 + vl.error[i,3]
long<-reshape(temp, idvar="ID",
vary...
2006 May 05
1
trouble with step() and stepAIC() selecting the best model
...0.0575099635396228, link = log)
Deviance Residuals:
Min 1Q Median 3Q Max
-7.591e-01 -3.688e-01 -1.828e-01 -8.494e-08 1.520e+00
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 110.729 47.643 2.324 0.02012 *
slope2 -34.202 972079.452 -3.52e-05 0.99997
slope3 -1.423 1.371 -1.038 0.29928
log(pH + 1) -51.244 19.544 -2.622 0.00874 **
log(CN + 1) -9.132 6.906 -1.322 0.18602
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
(Dispersion parameter f...
2017 Sep 19
2
symbolic computing example with Ryacas
Hi all,
I am trying to implement the following matlab code with Ryacas :
syms U x x0 C
d1=diff(U/(1+exp(-(x-x0)/C)),x);
pretty(d1)
d2=diff(U/(1+exp(-(x-x0)/C)),x,2);
pretty(d2)
solx2 = solve(d2 == 0, x, 'Real', true)
pretty(solx2)
slope2=subs(d1,solx2)
I have tried the following :
library(Ryacas)
x <- Sym("x");U <- Sym("U");x0 <- Sym("x0");C <- Sym("C")
my_func <- function(x,U,x0,C) {
return (U/(1+exp(-(x-x0)/C)))}
FirstDeriv <- deriv(my_func(x,U,x0,C), x)
PrettyFo...
2005 Jun 10
0
Replies of the question about robustness of segmented regression
...es:
Estimated Break-Point(s):
Est. St.Err
Mean.Vel 1.285 0.05258
1.652 0.01247
Est. St.Err. t value CI(95%).l
CI(95%).u
slope1 0.4248705 0.3027957 1.403159 -0.1685982 1.018339
slope2 2.3281445 0.3079903 7.559149 1.7244946 2.931794
slope3 9.5425516 0.7554035 12.632390 8.0619879 11.023115
Adjusted R-squared: 0.9924.
Result2:
Initial break points are 1.5 and 1.7. The estimated break points and slopes:
Estimated Break-Point(s):...
2017 Sep 19
0
symbolic computing example with Ryacas
...to implement the following matlab code with Ryacas :
>
> syms U x x0 C
>
> d1=diff(U/(1+exp(-(x-x0)/C)),x);
>
> pretty(d1)
>
> d2=diff(U/(1+exp(-(x-x0)/C)),x,2);
>
> pretty(d2)
>
> solx2 = solve(d2 == 0, x, 'Real', true)
>
> pretty(solx2)
>
> slope2=subs(d1,solx2)
>
>
> I have tried the following :
>
> library(Ryacas)
>
> x <- Sym("x");U <- Sym("U");x0 <- Sym("x0");C <- Sym("C")
>
> my_func <- function(x,U,x0,C) {
>
> return (U/(1+exp(-(x-x0)/C)))}
>
&...
2009 Apr 08
2
Null-Hypothesis
...;- db/sd
> 2*pt(-abs(td), df)
My value I get by running this test is :[1] 2.305553e-07
Does it mean the two slopes differ significantly, because this value is in
the alpha area, so that I have to reject the null- hypothesis and accept
the alternative hypothesis?
Is the null-hypothesis: slope1=slope2?
Thanks for your help, Benedikt
--
2017 Sep 19
1
symbolic computing example with Ryacas
...gt;> syms U x x0 C
>>
>> d1=diff(U/(1+exp(-(x-x0)/C)),x);
>>
>> pretty(d1)
>>
>> d2=diff(U/(1+exp(-(x-x0)/C)),x,2);
>>
>> pretty(d2)
>>
>> solx2 = solve(d2 == 0, x, 'Real', true)
>>
>> pretty(solx2)
>>
>> slope2=subs(d1,solx2)
>>
>>
>> I have tried the following :
>>
>> library(Ryacas)
>>
>> x <- Sym("x");U <- Sym("U");x0 <- Sym("x0");C <- Sym("C")
>>
>> my_func <- function(x,U,x0,C) {
>>
>...
2011 Apr 22
2
statistic Q
Dear,
i am a student and I need help in comparing between different slopes and
finding whther there is a significant difference between them?
Thanks a lot
[[alternative HTML version deleted]]