Displaying 20 results from an estimated 24 matches for "sexm".
Did you mean:
seem
2008 Aug 16
1
ANCOVA: Next steps??
...)
Residuals:
Min 1Q Median 3Q Max
-0.156304 -0.036740 0.002953 0.039081 0.213696
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.538260 4.956850 1.924 0.0556 .
ageJ -15.943787 11.211551 -1.422 0.1564
sexM -11.844042 6.195258 -1.912 0.0572 .
year -0.004657 0.002474 -1.883 0.0611 .
ageJ:sexM 18.887391 13.657536 1.383 0.1681
ageJ:year 0.007923 0.005590 1.417 0.1578
sexM:year 0.005977 0.003091 1.934 0.0545 .
ageJ:sexM:year -0.00945...
2013 Jan 12
2
Interpreting coefficients in linear models with interaction terms
...3Q Max
-86.90 -26.28 -7.68 22.52 123.74
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 29.430 6.248 4.710 4.80e-06 ***
TestNumber2 56.231 8.837 6.364 1.47e-09 ***
TestNumber3 75.972 10.061 7.551 1.82e-12 ***
SexM 7.101 9.845 0.721 0.472
TestNumber2:SexM -16.483 13.854 -1.190 0.236
TestNumber3:SexM -24.571 15.343 -1.601 0.111
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
Residual standard error: 40.97 on 188 degrees of freedom
Mult...
2007 Jul 30
1
Extract random part of summary nlme
...ect named 'model'. The summary of that model is
shown below:
Using summary(model)$tTable , I receive the following output:
> summary(model)$tTable
Value Std.Error DF t-value p-value
(Intercept) 0.23268607 0.09350662 3990 2.4884449 1.287080e-02
sexM -0.15338225 0.03169762 3990 -4.8389206 1.354802e-06
standLRT 0.38593558 0.01677195 3990 23.0107762 4.005182e-110
vrmid 50% 0.07606394 0.09389376 61 0.8101064 4.210281e-01
vrtop 25% 0.24561327 0.10483374 61 2.3428838 2.241317e-02
intakemid 50% -0.41469716 0.0317...
2007 Jul 31
1
Extracting random parameters from summary lme and lmer
...ect named 'model'. The summary of that model is
shown below:
Using summary(model)$tTable , I receive the following output:
> summary(model)$tTable
Value Std.Error DF t-value p-value
(Intercept) 0.23268607 0.09350662 3990 2.4884449 1.287080e-02
sexM -0.15338225 0.03169762 3990 -4.8389206 1.354802e-06
standLRT 0.38593558 0.01677195 3990 23.0107762 4.005182e-110
vrmid 50% 0.07606394 0.09389376 61 0.8101064 4.210281e-01
vrtop 25% 0.24561327 0.10483374 61 2.3428838 2.241317e-02
intakemid 50% -0.41469716 0.0317...
2010 Nov 16
1
glmer, Error: Downdated X'X is not positive definite,49
Dear list,
I am new to this list and I am new to the world of R. Additionally I am not
very firm in statistics either but have to deal. So here is my problem:
I have a dataset (which I attach at the end of the post) with a binomial
response variable (alive or not) and three fixed factors
(trapping,treat,sex). I do have repeated measures and would like to include
one (enclosure) random factor.
I
2007 Jul 30
0
Extracting random parameters from summary lme
...ect named 'model'. The summary of that model is
shown below:
Using summary(model)$tTable , I receive the following output:
> summary(model)$tTable
Value Std.Error DF t-value p-value
(Intercept) 0.23268607 0.09350662 3990 2.4884449 1.287080e-02
sexM -0.15338225 0.03169762 3990 -4.8389206 1.354802e-06
standLRT 0.38593558 0.01677195 3990 23.0107762 4.005182e-110
vrmid 50% 0.07606394 0.09389376 61 0.8101064 4.210281e-01
vrtop 25% 0.24561327 0.10483374 61 2.3428838 2.241317e-02
intakemid 50% -0.41469716 0.0317...
2010 Oct 04
2
Plot for Binomial GLM
...iance Residuals:
Min 1Q Median 3Q Max
-1.82241 -0.85632 0.06675 0.61981 1.47874
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.47939 0.46167 -7.537 4.83e-14 ***
Dose 0.10597 0.01286 8.243 < 2e-16 ***
SexM 0.15501 0.63974 0.242 0.809
Dose:SexM -0.01821 0.01707 -1.067 0.286
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 225.455 on 23 degrees of freedom
Residual deviance...
2007 Dec 07
1
paradox about the degree of freedom in a logistic regression model
...glm(formula = SF ~ sex * ldose, family = binomial)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.39849 -0.32094 -0.07592 0.38220 1.10375
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.9935 0.5527 -5.416 6.09e-08 ***
sexM 0.1750 0.7783 0.225 0.822
ldose 0.9060 0.1671 5.422 5.89e-08 ***
sexM:ldose 0.3529 0.2700 1.307 0.191
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance:...
2011 Feb 08
3
intervals {nlme} lower CI greater than upper CI !!!????
...+ random= ~rt|id, na.action=na.omit)
> intervals(GLU)$fixed
lower est. upper
(Intercept) 67.3467070345 7.362307e+01 7.989944e+01
rt *0.0148050160* 6.249304e-02 1.101811e-01
cd4 -0.0032133709 -6.566501e-04 1.900071e-03
sexM 0.9601467541 3.565606e+00 6.171066e+00
age *0.2436472425* 3.420025e-01 4.403578e-01
rfOTHER -5.0933264232 -1.198439e+00 2.696449e+00
rfETEROSESSUALE -2.1085096013 1.974725e+00 6.057960e+00
rfOMOSESSUALE -5.8156940466 -1.891870e+00 2.031953e+00
nadir...
2008 Feb 12
1
Finding LD50 from an interaction Generalised Linear model
...Deviance Residuals:
Min 1Q Median 3Q Max
-0.94787 -0.36158 0.04914 0.63592 1.56417
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.7634 0.5231 5.282 1.28e-07 ***
ldose -0.7793 0.1550 -5.028 4.96e-07 ***
sexM 0.7219 0.8477 0.852 0.39444
ldose:sexM -0.8085 0.3131 -2.582 0.00981 **
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 136.1139 on 11 degrees of freedom
Residual devianc...
2001 Nov 27
0
lme on large data frames
...0001
grade.L 1.42974 0.0597163 196971 23.9423 <.0001
grade.Q -2.77355 0.0384930 196971 -72.0533 <.0001
grade.C -0.33285 0.0364386 196971 -9.1345 <.0001
grade^4 1.10184 0.0355329 196971 31.0089 <.0001
grade^5 1.48623 0.0349311 196971 42.5477 <.0001
sexM -1.83115 0.0770710 134707 -23.7592 <.0001
ethnicityH 1.85379 0.0836131 134707 22.1711 <.0001
ethnicityM 3.09373 0.4232054 134707 7.3102 <.0001
ethnicityO 10.47489 0.4083131 134707 25.6541 <.0001
ethnicityW 10.16495 0.1245893 134707 81.5876 <.0001
Correlat...
2007 Jun 18
1
how to obtain the OR and 95%CI with 1 SD change of a continue variable
Dear all,
How to obtain the odds ratio (OR) and 95% confidence interval (CI) with
1 standard deviation (SD) change of a continuous variable in logistic
regression?
for example, to investigate the risk of obesity for stroke. I choose the
happening of stroke (positive) as the dependent variable, and waist
circumference as an independent variable. Then I wanna to obtain the OR
and 95% CI with
2003 Mar 15
1
formula, how to express for transforming the whole model.matrix, data=Orthodont
Hi, R or S+ users,
I want to make a simple transformation for the model,
but for the whole design matrix.
The model is distance ~ age * Sex, where Sex is a
factor. So the design matrix may look like the
following:
(Intercept) age SexFemale age:SexFemale
1 1 8 0 0
2 1 10 0 0
3 1 12 0 0
4
2004 Jun 09
2
Specifying xlevels in effects library
library(effects)
mod <- lm(Measurement ~ Age + Sex, data=d)
e <-effect("Sex",mod)
The effect is evaluated at the mean age.
> e
Sex effect
Sex
F M
43.33083 44.48531
>
> e$model.matrix
(Intercept) Age SexM
1 1 130.5859 0
23 1 130.5859 1
To evaluate the effect at Age=120 I tried:
e <-effect("Sex",mod,xlevels=list(Age=c(120)))
but the effect was still evaluated at 130.5859.
Is this an incorrect usage of xlevels?
Thanks, David
2008 Jan 07
1
xtable (PR#10553)
Full_Name: Soren Feodor Nielsen
Version: 2.5.0
OS: linux-gnu
Submission from: (NULL) (130.225.103.21)
The print-out of xtable in the following example is wrong; instead of yielding
the correct ci's for the second model it repeats the ci's from the first model.
require(xtable)
require(MASS)
data(cats)
b1<-lm(Hwt~Sex,cats)
b2<-lm(Hwt~Sex+Bwt,cats)
2007 Jul 30
1
A simple question about summary.glm
...summary(file.name, corr=F)
and got the following table:
Deviance Residuals:
Min 1Q Median 3Q Max
-14.118 -4.808 -1.466 2.033 33.882
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.696e+00 1.893e+00 4.594 1.06e-05 ***
sexm -3.791e+00 1.364e+00 -2.779 0.00631 **
trtccc -1.050e+00 4.325e+00 -0.243 0.80859
trtcga3 2.450e+00 4.325e+00 0.566 0.57211
trtcga4 -2.300e+00 4.325e+00 -0.532 0.59584
trtg 1.550e+00 2.497e+00 0.621 0.53593
trtga4 -5.550e...
2009 Mar 05
1
hatvalues?
I am struiggling a bit with this function 'hatvalues'. I would like a little more undrestanding than taking the black-box and using the values. I looked at the Fortran source and it is quite opaque to me. So I am asking for some help in understanding the theory. First, I take the simplest case of a single variant. For this I turn o John Fox's book, "Applied Regression Analysis
2007 Nov 28
2
fit linear regression with multiple predictor and constrained intercept
Hi group,
I have this type of data
x(predictor), y(response), factor (grouping x into many groups, with 6-20
obs/group)
I want to fit a linear regression with one common intercept. 'factor'
should only modify the slopes, not the intercept. The intercept is expected
to be >0.
If I use
y~ x + factor, I get a different intercept for each factor level, but one
slope only
if I use
y~ x *
2012 Oct 05
1
Error in lmer: asMethod(object) : matrix is not symmetric [1, 2]
Dear R Users,
I am having trouble with lmer. I am looking at recombinant versus non
recombinant individuals. In the response variable recombinant
individuals are coded as 1's and non-recombinant as 0's. I built a model
with 2 fixed factors and 1 random effect. Sex (males/females) is the
first fixed effect and sexual genotype (XY, YY, WX and WY) the second
one. Sexual Genotype is
2007 Dec 28
1
logistic mixed effects models with lmer
...d effects. At a certain point, I get a model (m17)
where the fixed effects are like this (full output is at end of
message):
> print(m17, corr=F)
...
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.97887 0.19699 -10.045 < 2e-16 ***
sexM 0.45553 0.14387 3.166 0.001544 **
...
is_discTRUE 0.24676 0.15204 1.623 0.104576
poly(wfreq, 2)1 -119.72397 11.00516 -10.879 < 2e-16 ***
poly(wfreq, 2)2 17.35646 5.44456 3.188 0.001433 **
poly(wlen_p, 2)1 -13.60798 7.26926 -1....