search for: setcolord

Displaying 11 results from an estimated 11 matches for "setcolord".

Did you mean: setcolor
2024 Dec 11
1
Cores hang when calling mcapply
...ut1_missing <- setdiff(all_cols, names(out1)) > out2_missing <- setdiff(all_cols, names(out2)) > > # Add missing columns with 0 > for (col in out1_missing) out1[, (col) := 0] > for (col in out2_missing) out2[, (col) := 0] > > # Ensure column order alignment if needed > setcolorder(out1, all_cols) > setcolorder(out2, all_cols) > > # Combine by ID_Key (since they share same columns now) > final_dt <- rbindlist(list(out1, out2), use.names = TRUE, fill = TRUE) > > # Step E: If needed, summarize across ID_Key to sum presence > indicators > final_res...
2024 Dec 12
1
Cores hang when calling mcapply
...;, .x, recycle0 = TRUE), -ID_Key)) all_cols <- unique(c(names(out1), names(out2))) out1_missing <- setdiff(all_cols, names(out1)) out2_missing <- setdiff(all_cols, names(out2)) for (col in out1_missing) out1[, (col) := 0] for (col in out2_missing) out2[, (col) := 0] setcolorder(out1, all_cols) setcolorder(out2, all_cols) final_dt <- rbindlist(list(out1, out2), use.names = TRUE, fill = TRUE) final_result <- as_tibble(final_dt[, lapply(.SD, sum, na.rm = TRUE), by = ID_Key, .SDcols = setdiff(names(final_dt), "ID_Key")]) Worth noting however:...
2024 Dec 11
1
Cores hang when calling mcapply
...ut1_missing <- setdiff(all_cols, names(out1)) > out2_missing <- setdiff(all_cols, names(out2)) > > # Add missing columns with 0 > for (col in out1_missing) out1[, (col) := 0] > for (col in out2_missing) out2[, (col) := 0] > > # Ensure column order alignment if needed > setcolorder(out1, all_cols) > setcolorder(out2, all_cols) > > # Combine by ID_Key (since they share same columns now) > final_dt <- rbindlist(list(out1, out2), use.names = TRUE, fill = TRUE) > > # Step E: If needed, summarize across ID_Key to sum presence > indicators > final_resu...
2024 Dec 11
1
Cores hang when calling mcapply
...;- setdiff(all_cols, names(out2)) > > > > > > # Add missing columns with 0 > > > for (col in out1_missing) out1[, (col) := 0] > > > for (col in out2_missing) out2[, (col) := 0] > > > > > > # Ensure column order alignment if needed > > > setcolorder(out1, all_cols) > > > setcolorder(out2, all_cols) > > > > > > # Combine by ID_Key (since they share same columns now) > > > final_dt <- rbindlist(list(out1, out2), use.names = TRUE, fill = TRUE) > > > > > > # Step E: If needed, summarize ac...
2024 Dec 12
1
Cores hang when calling mcapply
...ey)) > ? ? all_cols <- unique(c(names(out1), names(out2))) > ? ? out1_missing <- setdiff(all_cols, names(out1)) > ? ? out2_missing <- setdiff(all_cols, names(out2)) > ? ? for (col in out1_missing) out1[, (col) := 0] > ? ? for (col in out2_missing) out2[, (col) := 0] > ? ? setcolorder(out1, all_cols) > ? ? setcolorder(out2, all_cols) > ? ? final_dt <- rbindlist(list(out1, out2), use.names = TRUE, fill = TRUE) > ? ? final_result <- as_tibble(final_dt[, lapply(.SD, sum, na.rm = TRUE), by = ID_Key, .SDcols = setdiff(names(final_dt), "ID_Key")]) > &gt...
2024 Dec 11
1
Cores hang when calling mcapply
...s(out1)) > > out2_missing <- setdiff(all_cols, names(out2)) > > > > # Add missing columns with 0 > > for (col in out1_missing) out1[, (col) := 0] > > for (col in out2_missing) out2[, (col) := 0] > > > > # Ensure column order alignment if needed > > setcolorder(out1, all_cols) > > setcolorder(out2, all_cols) > > > > # Combine by ID_Key (since they share same columns now) > > final_dt <- rbindlist(list(out1, out2), use.names = TRUE, fill = TRUE) > > > > # Step E: If needed, summarize across ID_Key to sum presence &g...
2023 Jan 26
2
Resumen de R-help-es, Vol 167, Envío 10
...= sample(c("1","0"), 10, TRUE) , V3b = sample(c("1","0"), 10, TRUE) , V4a = sample(c("1","0"), 10, TRUE) , V4b = sample(c("1","0"), 10, TRUE)) dt[,":="(seq=.I)] setcolorder(dt,"seq") dt1 <- melt(dt,id.vars=1,measure.vars=2:ncol(dt),variable.name="vrb", value.name="vl") dt1[,":="(vrb_nm=str_sub(vrb,end=2),vrb_tp=str_sub(vrb,start=-1))] dt2 <- dcast(dt1,seq+vrb_nm~vrb_tp,fun.aggregate=\(x) paste0(x,collapse="|")...
2024 Dec 11
1
Cores hang when calling mcapply
...ut1_missing <- setdiff(all_cols, names(out1)) > out2_missing <- setdiff(all_cols, names(out2)) > > # Add missing columns with 0 > for (col in out1_missing) out1[, (col) := 0] > for (col in out2_missing) out2[, (col) := 0] > > # Ensure column order alignment if needed > setcolorder(out1, all_cols) > setcolorder(out2, all_cols) > > # Combine by ID_Key (since they share same columns now) > final_dt <- rbindlist(list(out1, out2), use.names = TRUE, fill = TRUE) > > # Step E: If needed, summarize across ID_Key to sum presence > indicators > final_resu...
2024 Dec 11
2
Cores hang when calling mcapply
Hi R users. Apologies for the lack of concrete examples because the dataset is large, and it being so I believe is the issue. I multiple, very large datasets for which I need to generate 0/1 absence/presence columns Some include over 200M rows, with two columns that need presence/absence columns based on the strings contained within them, as an example, one set has ~29k unique values and the
2023 Jan 27
0
Resumen de R-help-es, Vol 167, Envío 10
..., V3b = sample(c("1","0"), 10, TRUE) > > > , V4a = sample(c("1","0"), 10, TRUE) > > > , V4b = sample(c("1","0"), 10, TRUE)) > > > dt[,":="(seq=.I)] > > > setcolorder(dt,"seq") > > > > > > dt1 <- melt(dt,id.vars=1,measure.vars=2:ncol(dt),variable.name="vrb", > > > value.name="vl") > > > dt1[,":="(vrb_nm=str_sub(vrb,end=2),vrb_tp=str_sub(vrb,start=-1))] > > > dt2 <- dcast...
2023 Jan 28
0
Resumen de R-help-es, Vol 167, Envío 10
..., V3b = sample(c("1","0"), 10, TRUE) > > > , V4a = sample(c("1","0"), 10, TRUE) > > > , V4b = sample(c("1","0"), 10, TRUE)) > > > dt[,":="(seq=.I)] > > > setcolorder(dt,"seq") > > > > > > dt1 <- melt(dt,id.vars=1,measure.vars=2:ncol(dt),variable.name="vrb", > > > value.name="vl") > > > dt1[,":="(vrb_nm=str_sub(vrb,end=2),vrb_tp=str_sub(vrb,start=-1))] > > > dt2 <- dcast...