search for: sar2

Displaying 4 results from an estimated 4 matches for "sar2".

Did you mean: sar
2017 Jun 20
1
How to write an estimated seasonal ARIMA model from R output?
...g command. arima (x, order = c(p,d,q), seasonal =list(order=c(P,D,Q), period=s) How can I write an estimated seasonal ARIMA model from the outputs. To be specifically, which sign to use? I know R uses a different signs from S plus. Is it correct that the model is: (1-ar1*B-ar2*B^2-...)(1-sar1*B^s-sar2*B^2s-....)(1-B)^d(1-B^s)^D X_t=(1+ma1*B+ma2*B^2+...)(1+sma1*B^s+sma2*B^2s+....) a_t For example: > m1=arima(koeps,order=c(0,1,1),seasonal=list(order=c(0,1,1),period=4)) > m1 Call: arima(x = koeps, order = c(0, 1, 1), seasonal = list(order = c(0, 1, 1), period = 4)) Coefficients: ma...
2009 Jan 23
1
forecasting error?
...0, start.q = 0, start.P = 0, start.Q = 0, stationary = FALSE, stepwise = TRUE) Coefficients: ar1 ar2 ma1 ma2 ma3 ma4 sar1 0.0639 -0.7820 -1.2103 1.2236 -0.9511 0.2357 1.0031 s.e. 0.0686 0.0582 0.1098 0.1558 0.1568 0.1007 0.0716 sar2 sma1 drift -0.0711 -0.8963 -780.9456 s.e. 0.0747 0.0608 403.2112 sigma^2 estimated as 10202381: log likelihood = -1100.61 AIC = 2206.69 AICc = 2209.23 BIC = 2236.98 >for<-forecast(mods,h=12,newxreg=(1+length(x[[1]])):(length(x[[1]]+12))) #forecast and as I said...
2023 Jan 05
1
R 'arima' discrepancies
...pca_tsb%>% model(ARIMA(servicos ~ 1 + pdq(2, 0, 1) + PDQ(2, 0, 2), method = "ML", optim.method = "BFGS", optim.control = list(maxit = 1000))) %>% report() summary(modelo) |*|Series: . ARIMA(2,0,1)(2,0,2)[12] with non-zero mean Coefficients: ar1 ar2 ma1 sar1 sar2 sma1 sma2 mean 0.7534 0.0706 -0.5705 0.1759 0.7511 0.3533 -0.6283 0.5001 s.e. NaN NaN 0.0011 NaN NaN NaN NaN 0.1996 sigma^2 = 0.05312: log likelihood = 1.75 AIC=14.5 AICc=15.33 BIC=45.33 Training set error measures: ME RMSE MAE MPE MAPE MASE ACF1 Training set -0.006082139 0.2263...
2011 Dec 17
0
auto.arima from the Forecast package
...arima. I run the following command auto.arima(drivers,ic="aic",d=1,D=1,max.order=10,max.p=5,max.q=5,max.P=5,max.Q=5,stepwise=FALSE,allowdrift=FALSE) and I get the following output : Series: drivers ARIMA(0,1,1)(5,1,1)[12] Coefficients: ma1 sar1 sar2 sar3 sar4 sar5 sma1 -0.6421 -0.1341 -0.2063 -0.1076 -0.2361 -0.2205 -0.7387 s.e. 0.0718 0.1273 0.1061 0.1063 0.0938 0.1029 0.1312 sigma^2 estimated as 16916: log likelihood=-1137.18 AIC=2290.37 AICc=2291.21 BIC=2315.87 So the fitted model has an AIC...