search for: s_p

Displaying 4 results from an estimated 4 matches for "s_p".

Did you mean: _p
2012 Mar 14
2
Maximization problem in the optim function
Dear R Users I am maximizing a user defined log likelihood function. It includes variance parameter (sigma). I used R function optim with BFGS maximization method. However, it stops before the solution saying ?sqrt(sigma): NaNs produced? Could anybody know a proper transformation for sigma which can be passed in the function? For the correlation parameter I used Fishers? transformation so it
2012 Oct 03
2
Error in if (any(ch)) { : missing value where TRUE/FALSE needed
Can someone please help with the error message below? thanks! Start: AIC=-Inf value ~ 1 + Core_CPI__ + GDP_change + Unemployment + housing + interest + S_P + d1 + d2 + d3 Error in if (any(ch)) { : missing value where TRUE/FALSE needed In addition: Warning message: attempting model selection on an essentially perfect fit is nonsense ______________________________________________________________________ The information transmitted, including any att...
2012 Oct 09
1
why does R stepAIC keep unsignificant variables?
.... Error t value Pr(>|t|) (Intercept) 1.315e-01 2.687e-01 0.490 0.63611 Core_CPI__ 1.290e-02 7.496e-03 1.721 0.11927 GDP_change -3.482e-03 2.075e-03 -1.678 0.12767 Unemployment 1.209e-02 6.970e-03 1.735 0.11685 interest -5.580e-03 3.923e-03 -1.422 0.18863 housing 6.692e-04 5.812e-04 1.151 0.27928 S_P 7.636e-05 3.967e-05 1.925 0.08641 . d1 2.087e-02 6.102e-03 3.421 0.00762 ** d2 -2.059e-02 7.331e-03 -2.808 0.02043 * d3 -2.769e-02 6.268e-03 -4.418 0.00168 ** --- Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1 Residual standard error: 0.008362 on 9 degrees of freedom Multiple R-squar...
2005 Jul 29
0
PLS component selection for GPLS question
...ot sure how to choose the right number of PLS components for my data set. I used the function errorest() from package ipred to estimate the error rates und gpls() with Firth procedure switched on. The attached PDF Graphik illustrates the problem for my data set. S_n is the model sensitivity and S_p the model specifity. With 4 component I get the best crossvalidation error rate 17% and with 5 components the best bootstrap error rate 9%, but the sensitivity of the model is only 11% ! If one choose 13 components, one gets 100% sensitivity and 100% specifity and CV error is 34% and the boostr...