Displaying 20 results from an estimated 32 matches for "rr1".
Did you mean:
rc1
2010 Oct 04
1
Help with apply
Suppose I have the following data:
tmp <- data.frame(var1 = sample(c(0:10), 3, replace = TRUE), var2 = sample(c(0:10), 3, replace = TRUE), var3 = sample(c(0:10), 3, replace = TRUE))
I can run the following double loop and yield what I want in the end (rr1) as:
library(statmod)
Q <- 2
b <- runif(3)
qq <- gauss.quad.prob(Q, dist = 'normal', mu = 0, sigma=1)
rr1 <- matrix(0, nrow = Q, ncol = nrow(tmp))
L <- nrow(tmp)
for(j in 1:Q){
for(i in 1:L){...
2012 Jul 15
1
how to extract p-value in GenMatch function
...alue. I have written R-code below
library("Matching")
data("lalonde")
attach(lalonde)
names(lalonde)
Y <- lalonde$re78
Tr <- lalonde$treat
glm1 <- glm(Tr~age+educ+black+hisp+married+nodegr+re74+re75,family=binomial,data=lalonde)
pscore.predicted <- predict(glm1)
rr1 <- Match(Y=Y,Tr=Tr,X=glm1$fitted,estimand="ATT", M=1,ties=TRUE,replace=TRUE)
summary(rr1)
> summary(rr1)
Estimate... 2624.3
AI SE...... 802.19
T-stat..... 3.2714
p.val...... 0.0010702
Original number of observations.............. 445
Original number of treated obs........
2009 Jul 06
1
transform multi skew-t to uniform distribution
Hi R-users,
I have a data from multi skew t and would like to transform each of the data to uniform data. I tried using 'pmst' but only got one output:
> rr1 <- as.vector(r1);rr1
[1] 0.7207582 5.2250906 1.7422237 0.5677233 0.7473555 -0.6020626 -2.1947872 -1.1128313 -0.6587316 -1.1409261
> pmst(rr1, xi=rep(0,10), Omega=diag(10), alpha=rep(1,10), df=5)
[1] 3.676525e-09
attr(,"error")
[1] 3.878226e-11
attr(,"status")
[1]...
2010 Sep 29
1
nlminb and optim
...} else {
startVal <- rep(0, ncol(data))
}
#qq <- gauss.quad.prob(Q, dist = 'normal', mu = 0, sigma=1)
qq <- gauss.quad.prob(Q, dist = 'uniform', alpha = -5, beta=5)
rr1 <- matrix(0, nrow = Q, ncol = nrow(data))
data <- as.matrix(data)
L <- nrow(data)
C <- ncol(data)
fn <- function(b){
b <- b[1:C]
for(j in 1:Q){...
2008 Sep 19
0
panel data analysis possible with mle2 (bbmle)?
...########################################
cross <- 3;years <- 13 #cross sections and years to be included
frontr<-vector(length=years);ggwth <- 0.03; frontr[1]=17
for (i in 2:years) {frontr[i]=frontr[i-1]*(1+ggwth)}
frontr <- rep(frontr,times=cross)
atech <- matrix(0,years,cross);rr1 <- matrix(0,years,cross)
agwth <- matrix(0,years,cross);cfgwth <- matrix(0,years,cross)
aobs <-
c(15.89,16.69,17.93,17.49,18.3,19.1,19.2,19.4,20.29,21.13,21.42,22.76,23.83,
14.1,14.4,13.4,14.9,15.23,15.4,15.55,16.7,17.8,18.87,18.99,19.24,20.59,
14.3,14.4,14.7,14.9,1...
2005 Nov 08
2
retrieve most abundant species by sample unit
...s what it looks
like stacked. I have experimented with tapply(), by(), and some
functions mentioned in archived postings, but I haven't seen anything
that answers to this directly. Does anybody have any ideas?
OBJECTID PolygonID SpeciesCod AbundanceP
1 15006 ANT-CBG-rr1 Leymol 5.00000
3 15008 ANT-CBG-rr1 Ambcha 5.00000
5 15010 ANT-ESH-27 Atrpat 20.00000
6 15011 ANT-ESH-27 Ambcha 10.00000
11 15016 ANT-ESH-28 Salvir 20.00000
14 15019 ANT-ESH-28 Atrpat 5.00000
18 15023 ANT...
2012 Oct 22
1
Matlab code to R code
...ever it dies not work as expected. Hope somebody can help me to match Matlab and r codes.
R code:
rr <- function(r,cxn)
{
tol <- 1E-4;
for(i in 1:n)
{
t1 <- (1+(i-1)*r)*log((1+(i-1)*r))
t2 <- (i-1)*(1-r)*log(1-r)
rri <- ((t1+t2)/i*log(i))-cxn
rr <- rri > tol
}
round(rr,4)
}
rr1 <- rr(0.5,0.0242) ; rr1
Matlab code:
function F = cxncnr(r)
n = 4;
% terms
t1 = (1+(n-1)*r)*log((1+(n-1)*r));
t2 = (n-1)*(1-r)*log(1-r);
%f = term - cxn
f = (t1+t2)/(n*log(n)) - 0.05011007
F = [f];
% r0 = [0.5] ; r = fsolve(@cxncnr,r0)
Thank you so much for any help given.
[[alternative H...
2008 Aug 26
2
svymeans question
I have the following code which produces the output below it
clus1 <- svydesign(ids = ~schid, data = lower_dat)
items <- as.formula(paste(" ~ ", paste(lset, collapse= "+")))
rr1 <- svymean(items, clus1, deff='replace', na.rm=TRUE)
> rr1
mean SE DEff
W525209 0.719748 0.015606 2.4932
W525223 0.508228 0.027570 6.2802
W525035 0.827202 0.014060 2.8561
W525131 0.805421 0.015425 3.1350
W525033 0.242982 0.020074 4.5239
W525163 0.904647 0.013905...
2007 Aug 23
0
weighted nls and confidence intervals
...consider the following simple example (yes, I know that this actually is a linar
model :-)):
#-----------------------------------------------------------------------------------
probex <- 0.05
x <- 1:10
y <- rnorm(x, x, .8)
w1 <- rep(1, 10)
w2 <- w1; w2[7:10] <- 0.01 * w2[7:10]
rr1 <- nls(y ~ a*x + b, data = list(x = x, y = y), start = list(a = 1, b = 0), weights = w1)
rr2 <- nls(y ~ a*x + b, data = list(x = x, y = y), start = list(a = 1, b = 0), weights = w2)
yfit1 <- fitted(rr1)
yfit2 <- fitted(rr2)
se.fit1 <- sqrt(apply(rr1$m$gradient(), 1, function(x) sum(v...
2007 Aug 31
0
non-linear fitting (nls) and confidence limits
...consider the following simple example (yes, I know that this actually is a linar
model :-)):
#-----------------------------------------------------------------------------------
probex <- 0.05
x <- 1:10
y <- rnorm(x, x, .8)
w1 <- rep(1, 10)
w2 <- w1; w2[7:10] <- 0.01 * w2[7:10]
rr1 <- nls(y ~ a*x + b, data = list(x = x, y = y), start = list(a = 1, b = 0), weights = w1)
rr2 <- nls(y ~ a*x + b, data = list(x = x, y = y), start = list(a = 1, b = 0), weights = w2)
yfit1 <- fitted(rr1)
yfit2 <- fitted(rr2)
se.fit1 <- sqrt(apply(rr1$m$gradient(), 1, function(x) sum(v...
2009 Nov 29
1
optim or nlminb for minimization, which to believe?
...startVal <- startVal
} else {
p <- colMeans(data)
startVal <- as.vector(log((1 - p)/p))
}
qq <- gauss.quad.prob(Q, dist = 'normal')
rr1 <- matrix(0, nrow = Q, ncol = nrow(data))
data <- as.matrix(data)
L <- nrow(data)
C <- ncol(data)
fn <- function(b){
for(j in 1:Q){
for(i in...
2008 Apr 22
3
[PATCH 0/3] ia64/pv_ops preparation
Hi. This patchset is preparation patches for ia64/pv_ops support.
They are almost trivial and mainly make kernel paravirtualization friendly.
thanks,
Diffstat:
arch/ia64/kernel/irq_ia64.c | 1 -
include/asm-ia64/intrinsics.h | 11 +++++++++++
include/asm-ia64/mmu_context.h | 6 +-----
include/asm-ia64/smp.h | 2 ++
include/asm-ia64/system.h | 10 ++++++++--
5 files
2008 Aug 17
1
before-after control-impact analysis with R
...cted
and 6 impacted). In this dataset, site is nested within harvest (H) and
year is nested within before-after (BA). Also, site is considered as
random by the authors. The data (fake again) can be produced with the
following commands:
>site<-c(rep(c("A1","A2", "RR1", "RR2", "WT1", "WT2", "WT3", "WT4"),8))
>H<-c(rep(c("exp", "exp", "prot", "pro", "exp", "exp", "exp", "exp"), 8))
>year<-c(rep(1989,8), rep(1990,8),...
2017 Oct 11
1
[PATCH v1 01/27] x86/crypto: Adapt assembly for PIE support
...x1, x0, t0; \
@@ -251,9 +255,9 @@ __cast5_enc_blk16:
movq %rdi, CTX;
- vmovdqa .Lbswap_mask, RKM;
- vmovd .Lfirst_mask, R1ST;
- vmovd .L32_mask, R32;
+ vmovdqa .Lbswap_mask(%rip), RKM;
+ vmovd .Lfirst_mask(%rip), R1ST;
+ vmovd .L32_mask(%rip), R32;
enc_preload_rkr();
inpack_blocks(RL1, RR1, RTMP, RX, RKM);
@@ -287,7 +291,7 @@ __cast5_enc_blk16:
popq %rbx;
popq %r15;
- vmovdqa .Lbswap_mask, RKM;
+ vmovdqa .Lbswap_mask(%rip), RKM;
outunpack_blocks(RR1, RL1, RTMP, RX, RKM);
outunpack_blocks(RR2, RL2, RTMP, RX, RKM);
@@ -325,9 +329,9 @@ __cast5_dec_blk16:
movq %rdi, CTX;...
2018 Mar 13
32
[PATCH v2 00/27] x86: PIE support and option to extend KASLR randomization
Changes:
- patch v2:
- Adapt patch to work post KPTI and compiler changes
- Redo all performance testing with latest configs and compilers
- Simplify mov macro on PIE (MOVABS now)
- Reduce GOT footprint
- patch v1:
- Simplify ftrace implementation.
- Use gcc mstack-protector-guard-reg=%gs with PIE when possible.
- rfc v3:
- Use --emit-relocs instead of -pie to reduce
2018 Mar 13
32
[PATCH v2 00/27] x86: PIE support and option to extend KASLR randomization
Changes:
- patch v2:
- Adapt patch to work post KPTI and compiler changes
- Redo all performance testing with latest configs and compilers
- Simplify mov macro on PIE (MOVABS now)
- Reduce GOT footprint
- patch v1:
- Simplify ftrace implementation.
- Use gcc mstack-protector-guard-reg=%gs with PIE when possible.
- rfc v3:
- Use --emit-relocs instead of -pie to reduce
2017 Oct 04
28
x86: PIE support and option to extend KASLR randomization
These patches make the changes necessary to build the kernel as Position
Independent Executable (PIE) on x86_64. A PIE kernel can be relocated below
the top 2G of the virtual address space. It allows to optionally extend the
KASLR randomization range from 1G to 3G.
Thanks a lot to Ard Biesheuvel & Kees Cook on their feedback on compiler
changes, PIE support and KASLR in general. Thanks to
2017 Oct 04
28
x86: PIE support and option to extend KASLR randomization
These patches make the changes necessary to build the kernel as Position
Independent Executable (PIE) on x86_64. A PIE kernel can be relocated below
the top 2G of the virtual address space. It allows to optionally extend the
KASLR randomization range from 1G to 3G.
Thanks a lot to Ard Biesheuvel & Kees Cook on their feedback on compiler
changes, PIE support and KASLR in general. Thanks to
2018 May 23
33
[PATCH v3 00/27] x86: PIE support and option to extend KASLR randomization
Changes:
- patch v3:
- Update on message to describe longer term PIE goal.
- Minor change on ftrace if condition.
- Changed code using xchgq.
- patch v2:
- Adapt patch to work post KPTI and compiler changes
- Redo all performance testing with latest configs and compilers
- Simplify mov macro on PIE (MOVABS now)
- Reduce GOT footprint
- patch v1:
- Simplify ftrace
2008 Apr 30
16
[PATCH 00/15] ia64/pv_ops take 5
Hi. This patchset implements ia64/pv_ops support which is the
framework for virtualization support.
Now all the comments so far have been addressed, but only a few exceptions.
On x86 various ways to support virtualization were proposed, and
eventually pv_ops won. So on ia64 the pv_ops strategy is appropriate too.
Later I'll post the patchset which implements xen domU based on
ia64/pv_ops.