search for: rid2

Displaying 8 results from an estimated 8 matches for "rid2".

Did you mean: rid
2017 Oct 11
1
[PATCH v1 01/27] x86/crypto: Adapt assembly for PIE support
..._64.S index 86107c961bb4..64eb5c87d04a 100644 --- a/arch/x86/crypto/cast5-avx-x86_64-asm_64.S +++ b/arch/x86/crypto/cast5-avx-x86_64-asm_64.S @@ -98,16 +98,20 @@ #define lookup_32bit(src, dst, op1, op2, op3, interleave_op, il_reg) \ - movzbl src ## bh, RID1d; \ - movzbl src ## bl, RID2d; \ - shrq $16, src; \ - movl s1(, RID1, 4), dst ## d; \ - op1 s2(, RID2, 4), dst ## d; \ - movzbl src ## bh, RID1d; \ - movzbl src ## bl, RID2d; \ - interleave_op(il_reg); \ - op2 s3(, RID1, 4), dst ## d; \ - op3 s4(, RID2, 4), dst ## d; + movzbl src...
2018 Mar 13
32
[PATCH v2 00/27] x86: PIE support and option to extend KASLR randomization
Changes: - patch v2: - Adapt patch to work post KPTI and compiler changes - Redo all performance testing with latest configs and compilers - Simplify mov macro on PIE (MOVABS now) - Reduce GOT footprint - patch v1: - Simplify ftrace implementation. - Use gcc mstack-protector-guard-reg=%gs with PIE when possible. - rfc v3: - Use --emit-relocs instead of -pie to reduce
2018 Mar 13
32
[PATCH v2 00/27] x86: PIE support and option to extend KASLR randomization
Changes: - patch v2: - Adapt patch to work post KPTI and compiler changes - Redo all performance testing with latest configs and compilers - Simplify mov macro on PIE (MOVABS now) - Reduce GOT footprint - patch v1: - Simplify ftrace implementation. - Use gcc mstack-protector-guard-reg=%gs with PIE when possible. - rfc v3: - Use --emit-relocs instead of -pie to reduce
2017 Oct 04
28
x86: PIE support and option to extend KASLR randomization
These patches make the changes necessary to build the kernel as Position Independent Executable (PIE) on x86_64. A PIE kernel can be relocated below the top 2G of the virtual address space. It allows to optionally extend the KASLR randomization range from 1G to 3G. Thanks a lot to Ard Biesheuvel & Kees Cook on their feedback on compiler changes, PIE support and KASLR in general. Thanks to
2017 Oct 04
28
x86: PIE support and option to extend KASLR randomization
These patches make the changes necessary to build the kernel as Position Independent Executable (PIE) on x86_64. A PIE kernel can be relocated below the top 2G of the virtual address space. It allows to optionally extend the KASLR randomization range from 1G to 3G. Thanks a lot to Ard Biesheuvel & Kees Cook on their feedback on compiler changes, PIE support and KASLR in general. Thanks to
2018 May 23
33
[PATCH v3 00/27] x86: PIE support and option to extend KASLR randomization
Changes: - patch v3: - Update on message to describe longer term PIE goal. - Minor change on ftrace if condition. - Changed code using xchgq. - patch v2: - Adapt patch to work post KPTI and compiler changes - Redo all performance testing with latest configs and compilers - Simplify mov macro on PIE (MOVABS now) - Reduce GOT footprint - patch v1: - Simplify ftrace
2017 Oct 11
32
[PATCH v1 00/27] x86: PIE support and option to extend KASLR randomization
Changes: - patch v1: - Simplify ftrace implementation. - Use gcc mstack-protector-guard-reg=%gs with PIE when possible. - rfc v3: - Use --emit-relocs instead of -pie to reduce dynamic relocation space on mapped memory. It also simplifies the relocation process. - Move the start the module section next to the kernel. Remove the need for -mcmodel=large on modules. Extends
2017 Oct 11
32
[PATCH v1 00/27] x86: PIE support and option to extend KASLR randomization
Changes: - patch v1: - Simplify ftrace implementation. - Use gcc mstack-protector-guard-reg=%gs with PIE when possible. - rfc v3: - Use --emit-relocs instead of -pie to reduce dynamic relocation space on mapped memory. It also simplifies the relocation process. - Move the start the module section next to the kernel. Remove the need for -mcmodel=large on modules. Extends