Displaying 2 results from an estimated 2 matches for "rf_model".
Did you mean:
cu_model
2013 Feb 03
3
RandomForest, Party and Memory Management
...is welcome and useful.
myparty <- cforest(SalePrice ~ ModelID+
ProductGroup+
ProductGroupDesc+MfgYear+saledate3+saleday+
salemonth,
data = trainRF,
control = cforest_unbiased(mtry = 3, ntree=300, trace=TRUE))
rf_model <- randomForest(SalePrice ~ ModelID+
ProductGroup+
ProductGroupDesc+MfgYear+saledate3+saleday+
salemonth,
data = trainRF,na.action = na.omit,
importance=TRUE, do.trace=100, mtry=3,ntree=300)
2) I have anothe...
2013 Mar 24
1
Random Forest, Giving More Importance to Some Data
...hould matter for the prediction.
Any idea about how this could be achieved?
Please find below a snippet showing how I use the randomForest library (on
a multi-core machine).
Any suggestion is appreciated.
Cheers
Lorenzo
###########################################################################
rf_model <- foreach(iteration=1:cores,
ntree = rep(50, 4),
.combine = combine,
.packages = "randomForest") %dopar%{
sink("log.txt", append=TRUE)
cat(paste("Starting iteration",iteration,"\n&qu...