Displaying 8 results from an estimated 8 matches for "rel_t".
2012 Jan 24
1
problems with rollapply {zoo}
...OHLC object (as an aside, the tick data
includes volume, but I have yet to figure out how to make an OHLC object hat
includes volume)
z <- xts(y[,2],y[,1])
alpha <- to.minutes3(z, OHLC=TRUE)
colnames(alpha) <- c("Open","High","Low","Close")
alpha$rel_t <- seq(1-nrow(alpha),0)
# Just to check the code for the regression, apply the regression to the
whole series (unless the series is realy short or has a strong slow pattern
the regression result is not useful except to show that the code works)
polyfit <- lm(Close ~ poly(rel_t,4),alpha)
po...
2018 Mar 13
32
[PATCH v2 00/27] x86: PIE support and option to extend KASLR randomization
Changes:
- patch v2:
- Adapt patch to work post KPTI and compiler changes
- Redo all performance testing with latest configs and compilers
- Simplify mov macro on PIE (MOVABS now)
- Reduce GOT footprint
- patch v1:
- Simplify ftrace implementation.
- Use gcc mstack-protector-guard-reg=%gs with PIE when possible.
- rfc v3:
- Use --emit-relocs instead of -pie to reduce
2018 Mar 13
32
[PATCH v2 00/27] x86: PIE support and option to extend KASLR randomization
Changes:
- patch v2:
- Adapt patch to work post KPTI and compiler changes
- Redo all performance testing with latest configs and compilers
- Simplify mov macro on PIE (MOVABS now)
- Reduce GOT footprint
- patch v1:
- Simplify ftrace implementation.
- Use gcc mstack-protector-guard-reg=%gs with PIE when possible.
- rfc v3:
- Use --emit-relocs instead of -pie to reduce
2017 Oct 04
28
x86: PIE support and option to extend KASLR randomization
These patches make the changes necessary to build the kernel as Position
Independent Executable (PIE) on x86_64. A PIE kernel can be relocated below
the top 2G of the virtual address space. It allows to optionally extend the
KASLR randomization range from 1G to 3G.
Thanks a lot to Ard Biesheuvel & Kees Cook on their feedback on compiler
changes, PIE support and KASLR in general. Thanks to
2017 Oct 04
28
x86: PIE support and option to extend KASLR randomization
These patches make the changes necessary to build the kernel as Position
Independent Executable (PIE) on x86_64. A PIE kernel can be relocated below
the top 2G of the virtual address space. It allows to optionally extend the
KASLR randomization range from 1G to 3G.
Thanks a lot to Ard Biesheuvel & Kees Cook on their feedback on compiler
changes, PIE support and KASLR in general. Thanks to
2018 May 23
33
[PATCH v3 00/27] x86: PIE support and option to extend KASLR randomization
Changes:
- patch v3:
- Update on message to describe longer term PIE goal.
- Minor change on ftrace if condition.
- Changed code using xchgq.
- patch v2:
- Adapt patch to work post KPTI and compiler changes
- Redo all performance testing with latest configs and compilers
- Simplify mov macro on PIE (MOVABS now)
- Reduce GOT footprint
- patch v1:
- Simplify ftrace
2017 Oct 11
32
[PATCH v1 00/27] x86: PIE support and option to extend KASLR randomization
Changes:
- patch v1:
- Simplify ftrace implementation.
- Use gcc mstack-protector-guard-reg=%gs with PIE when possible.
- rfc v3:
- Use --emit-relocs instead of -pie to reduce dynamic relocation space on
mapped memory. It also simplifies the relocation process.
- Move the start the module section next to the kernel. Remove the need for
-mcmodel=large on modules. Extends
2017 Oct 11
32
[PATCH v1 00/27] x86: PIE support and option to extend KASLR randomization
Changes:
- patch v1:
- Simplify ftrace implementation.
- Use gcc mstack-protector-guard-reg=%gs with PIE when possible.
- rfc v3:
- Use --emit-relocs instead of -pie to reduce dynamic relocation space on
mapped memory. It also simplifies the relocation process.
- Move the start the module section next to the kernel. Remove the need for
-mcmodel=large on modules. Extends