Displaying 16 results from an estimated 16 matches for "rel_reduction_of_f".
2008 Oct 02
1
In the OPTIM message....
...used the method, L-BFGS-B, in OPTIM, I've got the following message.
---------------------------------------------------------------------
$par
[1] 0.176166426835580
$value
[1] 1322.17600079332
$counts
function gradient
8 8
$convergence
[1] 0
$message
[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
$hessian
[,1]
[1,] 46300.3853279247
---------------------------------------------------------------------
First, what does that message, "CONVERGENCE: REL_REDUCTION_OF_F <=
FACTR*EPSMCH", mean? and I am wondering if the estimates are relia...
2005 Sep 06
1
R: optim
hi all
i dont understand the error message that is produced by the optim
function. can anybody help???
ie:
[[1]]$message
[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
can anyone help?
###########################################################################
SK.FIT(XDATA=a,XDATAname="a",PHI1=1,v=5,vlo=2,vhi=300,phi2lo=.01)
[[1]]
[[1]]$par
[1] -0.01377906 0.83859445 0.34675230 300.00000000
[[1]]$value
[1] 90.59185
[...
2012 Mar 20
2
Constraint Linear regression
...grad,
data=Data1,
method="L-BFGS-B",
lower=rep(0, 3),
upper=rep(1, 3))
D1.unbound
$par
c1 c2 c3
0.004387706 0.203562156 0.300825550
$value
[1] 0.07811152
$counts
function gradient
8 8
$convergence
[1] 0
$message
[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
Any suggestion on how to fix the error "CONVERGENCE: REL_REDUCTION_OF_F <=
FACTR*EPSMCH"?
[[alternative HTML version deleted]]
2004 Aug 03
1
nlminb vs optim
...and the algorithm continues the minimisation. It stops and
gives a
(-log(likelihood))=6104.45, with the messages:
"there are 50 or more warnings"
( warnings() = "multi-arguments returns are deprecated" in a function used
by the program)
$convergence=0
$message= CONVERGENCE:REL_REDUCTION_OF_F <= FACTR*EPSMCH
What does it mean? Is the convergence reached?
What can it be concluded from these two steps?
Thank you very much for your advices and help.
2009 Sep 30
1
Optim(...) estimate of stDev far too low
...;,lower=c(0.001, 0.001)
,upper = rep(Inf, 2), hessian=TRUE, control=list(trace=1))
iter 0 value 3.011784
final value 2.802694
converged
$par
[1] 4.6597779 0.3860387
$value
[1] 2.802694
$counts
function gradient
17 17
$convergence
[1] 0
$message
[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
WHich gives an estimate of stDev = 0.38
while the empirical stDev = 1.94
Is there anything wrong above in the code?
Thanks in advance
2009 Sep 24
1
Maximum likelihood estimation of parameters make no biological sense
...=1))
which gives:
$par Winf k t0 b sigma
[1] 24.27206813 0.04679844 0.00100000 1.61760492 0.01000000
$value
[1] -11.69524
$counts
function gradient
143 143
$convergence
[1] 0
$message
[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
$hessian
[,1] [,2] [,3] [,4] [,5]
[1,] 1.867150e+00 1.262763e+03 -7.857719 -5.153276e+01 -1.492850e-05
[2,] 1.262763e+03 8.608461e+05 -5512.469266 -3.562137e+04 9.693180e-05
[3,] -7.857719e+00 -5.512469e+03 41.670...
2007 Feb 16
1
optim() and resultant hessian
...a previous
optim() call and using these as starting values in the next function call.
The final call to optim() returns the following:
$par
[1] 0.2272361 0.8037642 26.8591998 3.0631280 0.2224566
$value
[1] -46.13906
$counts
function gradient
4 4
$convergence
[1] 0
$message
[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
$hessian
[,1] [,2] [,3] [,4] [,5]
[1,] 1.267070e+17 1.012691e+17 1.348054e+15 625551.58724 9.359559e+07
[2,] 1.012691e+17 8.189877e+16 1.144248e+15 569562.44945 8.699072e+07
[3,] 1.348054e+15 1.144248e+15 2.457323e+05 3426.60293 -2.297009e+03
[4,] 6.255516e+05 5.695624e+05...
2007 Jan 03
1
optim
...experimentalPI=3.48, lambda = lambda)
The output is:
$par
[1] 0.56350964 0.56350964 0.56350964 0.56350964 0.00000000 -0.29515957
[7] 0.00569937 0.32543297 0.18615880
$value
[1] 0.2529198
$counts
function gradient
31 31
$convergence
[1] 0
$message
[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
Warning messages:
1: bounds can only be used with method L-BFGS-B in: optim(par, errorFunction, gr = NULL, method = "Nelder-Mead",
2: NAs introduced by coercion
If I change my "error-function" to
errorFunction <- function(localShifts,globalShif...
2003 Feb 01
1
Trouble with optim
....70595
Eval fn at 0.699 10.3 8.5 --- Val = 42.70603
...
Eval fn at 0.7425713 21.12820 0.001 --- Val = 64.99
Eval fn at 0.7425713 21.12920 0.002 --- Val = 60.20449
Eval fn at 0.7425713 21.12920 0.001 --- Val = 64.99
> o$val
[1] 64.99
> o$convergence
[1] 0
> o$message
[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
So optim thinks it has found an optimum (i.e. minimum). But my initial
guess is better than optim's answer; and optim has visited many points
which are better than its final answer.
If I choose a different initial guess, like c(.7,10.3,1), optim reaches
the answer I e...
2002 Jul 30
1
Optim() returns wrong maximum
....267
>
> lik.t.cen.log
$par
[1] 0.007369536 0.032623958 1.025064715 0.315420992 0.288083186
0.008728551
[7] 1.016895527 0.978822785 0.552299864 1.016390800 0.000100000
$value
[1] -1697.267
$counts
function gradient
50 50
$convergence
[1] 0
$message
[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
###########
Here ``likeli.time.log'' and ``gradient.time.log'' are functions,
``temp.censor'' is a list with input variables for the two functions
(data, fixed parameters, etc.), and the parameter space is of dimension
11.
Note that value returne...
2010 Nov 03
3
optim works on command-line but not inside a function
...h the same data, it
works fine:
> optRes <- optim(c(0,0), method="L-BFGS-B", fn=IRT.llZetaLambdaCorrNan,
+ gr=IRT.gradZL,
+ lower=c(-Inf, -Inf), upper=c(Inf, Inf), t=st, X=sx)
> optRes
$par
[1] -0.6975157 0.7944972
$convergence
[1] 0
$message
[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
Does anyone have an idea what this could be, and what I could try to avoid
this error? I tried bounding the parameters, with lower=c(-10, -10) and
upper=... but that made no difference.
Thanks,
Diederik Roijers
Utrecht University MSc student.
------
PS: the other funct...
2004 Aug 11
0
always NaN after some running in R, but all fine in S-plus
...1274840 [1] 5106.236
$par:
[1] 0.77012134 4.34425988 0.14248754 0.30722383 0.12748400
[6] 0.48420116 0.00000000 0.02095689 0.00000000 0.61156935
[11] 0.77179635 0.00000000
$value:
[1] 5106.049
$counts:
function gradient
21 21
$convergence:
[1] 0
$message:
[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
I tried the 'bad' parameters in S-plus:
> likelihood(par=rep(0,12),data=data03) #It is NA.
[1] NA
> likelihood(data=data03) #It is normal again.
[1] 5834.421
Thank you very much for your time!
###########################################
This m...
2013 May 29
0
"Unable to optimize" error returned in factanal using R-3.0.1, Windows 64 bit, and OpenBLAS
...0.41936338
Agriculture 0.49205978
Examination 0.26976286
Education 0.00050000
Catholic 0.06973751
Infant.Mortality 0.96007318
$value
[1] 0.5008949
$counts
function gradient
22 22
$convergence
[1] 0
$message
[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
I have never seen that particular failure message from `optim` before, "NEW_X", and I cannot locate what it means. It is possible, if not probably, that it has to do with one of the functions internal to `factanal.fit.mle`, possibly the call to `eigen` as I presu...
2010 Nov 09
0
convergence message & SE calculation when using optim( )
...7 1.519658195 1.378913148 2.800328223
1.448902455 2.280837645
[15] 1.594648898 0.011581676 0.040651369 0.000000000 0.000000000
0.000000000 0.002717246
$value
[1] 14535187
$counts
function gradient
54 54
$convergence
[1] 0
$message
[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
$hessian
[,1] [,2] [,3] [,4]
[,5] [,6]
[1,] 0.000000e+00 0.000000e+00 0.000000e+00 -0.0023283064
0.0000000000 2.328306e-03
[2,] 0.000000e+00 0.000000e+00 0.000000e+00 -0.0023283064
0.0000000000 2.328306e-03...
2009 Feb 04
0
Problem using option packeg with new R version (PR#13498)
...fn2<- -length(c)*log(par[2])+sum(log(par[2]*par[2]+(c-par[1])*(c-par[1])))+ }> optim(v,fn1,NULL,method="BFGS",X)$par[1] 0.3857697 -1.3984869 2.0925084 3.2370430 -1.6269258$value[1] -6.132011$countsfunction gradient 15 15 $convergence[1] 0$message[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"There were 50 or more warnings (use warnings() to see the first 50)> #=====================================================================================> > c<-rn!
orm(10)> v<-rnorm(10)> w<-rexp(10)> fn1<-function(v) {+ for(i !
in 1:10)
{+...
2009 Jun 01
1
installing sn package
...6611
# c2 and c3 are sort of okay (larger range of variation for x2 and x3)
# but c1 is a bit out of whack (residual=3, we were unlucky...)
$value
[1] 12.87678
# keep in mind for future comparison
$counts
function gradient
9 9
$convergence
[1] 0
$message
[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
>
> # Another rainchech : does bound optimization reach the same objective
> # when the "true" value lies in the bound region ?
>
> system.time(D2.unbound<-optim(par=c(c1=0.5, c2=0.5, c3=0.5),
+ fn=objfun,
+ ...