Displaying 5 results from an estimated 5 matches for "ratec".
Did you mean:
rate
2010 Feb 10
4
Readjusting the OUTPUT csv file
...a R code
## FUNCTION NO. 3
library(reshape)
no_rate = 3
combi_3 = function(n, N, rateA, rate_name1, rateA_rf1, rateA_rf2, rateA_rf3, rateAprob1, rateAprob2, rateAprob3,
rateB, rate_name2, rateB_rf1, rateB_rf2, rateB_rf3, rateBprob1, rateBprob2, rateBprob3,
rateC, rate_name3, rateC_rf1, rateC_rf2, rateC_rf3, rateCprob1, rateCprob2, rateCprob3)
{
rateA_prob1 = rateAprob3/2
rateA_prob2 = rateAprob2/2
rateA_prob3 = rateAprob1
rateA_prob4 = rateA_prob2
rateA_prob5 = rateA_prob1
rateA_ran1_min = rateA-rateA_rf3
rateA_ran1_max = rateA-rateA_rf2
rateA_r...
2018 Apr 04
1
parfm unable to fit models when hazard rate is small
...y parfm struggles with low event rates? Or could someone please run my code to see if they get the same issue? Full reproducible code is presented below.
Many thanks for any help,
Alex
CODE:
### Create function to generate data
simulWeib <- function(N, lambda, rho, beta1, beta2, beta3, beta4, rateC, sigma)
{
# covariate --> N Bernoulli trials
x1 <- sample(x=c(0, 1), size=N, replace=TRUE, prob=c(0.5, 0.5))
# Now create random effect stuff
# Create one vector of length N, all drawn from same normal distribution
rand.effect <- rnorm(N,0,sigma)
# Weibull latent event times...
2018 Mar 28
0
coxme in R underestimates variance of random effect, when random effect is on observation level
...h may be helpful.
Reproducible example here (using coxme):
setwd("/mnt/ja01-home01/mbrxsap3/phd_risk/R/p4_run_analysis/")
library(coxme)
library(survival)
### Create data with a group level random effect
simulWeib.group <- function(N, lambda, rho, beta1, beta2, beta3, beta4, rateC, sigma, M)
{
# covariate --> N Bernoulli trials
x1 <- sample(x=c(0, 1), size=N, replace=TRUE, prob=c(0.5, 0.5))
x2 <- sample(x=c(0, 1), size=N, replace=TRUE, prob=c(0.5, 0.5))
x3 <- sample(x=c(0, 1), size=N, replace=TRUE, prob=c(0.5, 0.5))
x4 <- sample(x=c(0, 1)...
2011 Aug 23
0
survival analysis of EEG data
...have some questions how to
apply and interpret the coxph and related functions:
I have time-dependent covariates with several measurements per subject with
constant delta t. The covariates change in each time step.
I fitted the following model:
fit <- coxph(Surv(start, stop, event) ~ ratePO + rateC + BLamp + BLP80 +
cluster(subjectID), data=dat)
and get
n= 1081, number of events= 10
coef exp(coef) se(coef) robust se z
Pr(>|z|)
ratePO -0.50189 0.60539 0.25195 0.17696 -2.836 0.004565 **
BLamp -0.05340 0.94800 0.02877 0.01470 -3.632 0.000281 ***
rat...
2008 Jun 19
5
Grandstream Busy Light Fields
.../65 ; Primoz
exten => 66,hint,SIP/66 ; Tibor
exten => 67,hint,SIP/67 ; Gregor
exten => 68,hint,SIP/68 ; Bostjan
exten => 69,hint,SIP/69 ; Oskar
exten => 70,hint,SIP/70 ; Jan
exten => 71,hint,SIP/71 ; Sinisa
exten => 73,hint,SIP/73 ; Tomaz Doma
exten => 78,hint,SIP/78 ; Tomaz Ratece
exten => 80,hint,SIP/80 ; Bostjan doma
exten => 82,hint,SIP/82 ; Tomaz
exten => 92,hint,SIP/92 ; Tomaz
exten => 95,hint,SIP/95 ; Test
This is it.
Kind regards,
Jan Prunk
--
Jan Prunk <janprunk AT SPAMFREE gmail DOT com>
Website: http://www.prunk.si PGP key: 00E80E86
Fingerpri...