search for: ranktest

Displaying 4 results from an estimated 4 matches for "ranktest".

Did you mean: randtest
2017 Jun 26
2
Classic fail-safe N
...sf.ies=escalc(xi=cases,ni=total,measure="PLO",data=dat) #I transform the data using the logit transformation first. In CMA, it also uses the logit transformation. transf.pes=rma(yi,vi,data=transf.ies,method="DL",weighted=TRUE) #Pooling individual effect sizes in the logit scale. ranktest(transf.pes) #Performing the fail-safe N. *Below are the results from R:* Fail-safe N Calculation Using the Rosenthal Approach Observed Significance Level: <.0001 Target Significance Level: 0.05 Fail-safe N: 8446 *Below are the Classic fail-safe N results from CMA:* Z-value for observed studi...
2017 Jun 26
0
Classic fail-safe N
...es,ni=total,measure="PLO",data=dat) #I transform >the data using the logit transformation first. In CMA, it also uses the >logit transformation. >transf.pes=rma(yi,vi,data=transf.ies,method="DL",weighted=TRUE) #Pooling >individual effect sizes in the logit scale. >ranktest(transf.pes) #Performing the fail-safe N. > >*Below are the results from R:* >Fail-safe N Calculation Using the Rosenthal Approach >Observed Significance Level: <.0001 >Target Significance Level: 0.05 >Fail-safe N: 8446 > >*Below are the Classic fail-safe N results from...
2017 Jun 25
0
Classic fail-safe N
...sf.ies=escalc(xi=cases,ni=total,measure="PLO",data=dat) #I transform the data using the logit transformation first. In CMA, it also uses the logit transformation. transf.pes=rma(yi,vi,data=transf.ies,method="DL",weighted=TRUE) #Pooling individual effect sizes in the logit scale. ranktest(transf.pes) #Performing the fail-safe N. *Below are the results from R:* Fail-safe N Calculation Using the Rosenthal Approach Observed Significance Level: <.0001 Target Significance Level: 0.05 Fail-safe N: 8446 *Below are the Classic fail-safe N results from CMA:* Z-value for observed studi...
2012 Apr 19
2
ANOVA in quantreg - faulty test for 'nesting'?
I am trying to implement an ANOVA on a pair of quantile regression models in R. The anova.rq() function performs a basic check to see whether the models are nested, but I think this check is failing in my case. I think my models are nested despite the anova.rqlist() function saying otherwise. Here is an example where the GLM ANOVA regards the models as nested, but the quantile regression ANOVA