search for: qb2

Displaying 2 results from an estimated 2 matches for "qb2".

Did you mean: nb2
2005 Oct 20
3
different F test in drop1 and anova
Hi, I was wondering why anova() and drop1() give different tail probabilities for F tests. I guess overdispersion is calculated differently in the following example, but why? Thanks for any advice, Tom For example: > x<-c(2,3,4,5,6) > y<-c(0,1,0,0,1) > b1<-glm(y~x,binomial) > b2<-glm(y~1,binomial) > drop1(b1,test="F") Single term deletions Model: y ~
2009 Nov 26
1
Arrhenius Plot 2 with lattice
...-6*.32e-4*(test$V1[c(2)]+test$V1[c(4)]-test $V1[c(1)]-test$V1[c(3)])) PB2<-c(1.1331/100e-6*.32e-4*(test$V1[c(6)]+test$V1[c(8)]-test $V1[c(5)]-test$V1[c(7)])) P2<-c(P2,(PA2+PB2)/2) bew2<-c(bew2,-RH2[c(46)]/P2[c(46)]) QA2<-c(QA2,(test$V1[c(2)]-test$V1[c(1)])/(test$V1[c(4)]-test$V1[c(3)])) QB2<-c(QB2,(test$V1[c(6)]-test$V1[c(5)])/(test$V1[c(8)]-test$V1[c(7)])) #....... Temp<-c(79,80,85,90,95,100,106,110,115,120,125,132,135,140,145,151,156,160,165,170,175,180,185,190,195,200,206,210,216,220,225,230,235,240,247,250,255,261,265,270,275,280,285,290,295,300) #Here I transform my data...