Displaying 15 results from an estimated 15 matches for "q25".
Did you mean:
25
2009 Feb 26
1
using predict method with an offset
...(34L, 57L, 94L, 152L, 160L, 160L), Incorrect = c(126L,
103L, 66L, 8L, 0L, 0L)), .Names = c("Contr", "Correct", "Incorrect"
), row.names = c("13", "15", "17", "19", "21", "23"), class = "data.frame")
q25 <- rep( qlogis( 0.25 ), nrow(c1) )
# offset defined in arguments
c1.glm <- glm( cbind(Correct, Incorrect) ~ Contr - 1, binomial,
c1, offset = q25 )
# offset defined in formula
c1f.glm <- glm( cbind(Correct, Incorrect) ~ Contr + offset(q25) -1,
binomial, c1 )
cc <- seq( 0, 1, len = 10...
2013 Apr 03
5
Can package plyr also calculate the mode?
I am trying to replicate the SAS proc univariate in R. I got most of the
stats I needed for a by grouping in a data frame using:
all1 <- ddply(all,"ACT_NAME", summarise, mean=mean(COUNTS), sd=sd(COUNTS),
q25=quantile(COUNTS,.25),median=quantile(COUNTS,.50),
q75=quantile(COUNTS,.75),
q90=quantile(COUNTS,.90), q95=quantile(COUNTS,.95),
q99=quantile(COUNTS,.99) )
So I got the mean, median std dev, quantiles etc.
IS there any way I can add the mode to the mixt. Thanks ahead for any
suggest...
2007 Feb 20
0
Standardized residual variances in SEM
...0.0e+00 Q20 <--- G
param21 0.64 0.068 9.3 0.0e+00 Q21 <--- G
param22 0.63 0.065 9.7 0.0e+00 Q22 <--- G
param23 0.71 0.065 10.9 0.0e+00 Q23 <--- G
param24 0.70 0.052 13.7 0.0e+00 Q24 <--- G
param25 0.41 0.066 6.3 3.4e-10 Q25 <--- G
param26 0.98 0.091 10.8 0.0e+00 Q1 <--> Q1
param27 0.72 0.068 10.6 0.0e+00 Q2 <--> Q2
param28 1.09 0.099 11.0 0.0e+00 Q3 <--> Q3
param29 0.77 0.072 10.7 0.0e+00 Q4 <--> Q4
param31 0.79 0.075 10.6 0.0e+00 Q...
2008 Mar 08
1
how to compute uncentered (pearson correlation) correlation efficiently
Hi,
Seeking suggestions to compute uncentered (pearson correlation) correlation
efficiently.
corr from stats library works on x and y columns. dist from amap library
works on x and y rows.
My data layout is slightly different such that row(i) of matrix x is
compared to row(i) of matrix y.
Thanks
[[alternative HTML version deleted]]
2009 Nov 12
1
Transforming a dataframe into a response/predictor matrix
...1213 **@uark.edu ## 10295236 9/3/2008
Xattempts Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19
1 1 1 1 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 1
2 1 1 1 1 1 1 0 1 0 0 1 1 0 0 1 0 0 0 0 1
Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30 Q31 Q32 Score Form CRSE_GRADE_OFF
1 0 0 0 0 0 0 0 0 0 1 0 0 0 9 E D
2 0 0 0 0 0 0 0 0 0 0 1 1 0 13 G D
Each student took a pre- and post- test indicated by the date under "Start"...
2024 Jun 12
1
my R code worked well when running the first 1000 lines of R code
...m contributed packages. At least to
those.
summary_anno1148ft <- anno1148ft %>%
tidyr::pivot_longer(c(t_depth, t_alt_count, t_alt_ratio), names_to =
"measure") %>%
dplyr::group_by(dat, measure) %>%
dplyr::summarize(minimum = min(value,na.rm=T),
q25 = quantile(value, probs = 0.25,na.rm=T),
med = median(value,na.rm=T),
q75 = quantile(value, probs = 0.75,na.rm=T),
maximum = max(value,na.rm=T),
average = mean(value,na.rm=T),
#standard_deviation = s...
2008 Jun 19
1
PrettyR (describe)
...", "Selenium",
"Silicon", "Sodium", "Sulfate", "TDS", "TIC", "TKN", "TOC", "TSS",
"TVSS", "Zinc"), row.names = 54:80, class = "data.frame")
library(prettyR)
library(moments)
Q25 <- function(x, na.rm=TRUE){quantile(as.numeric(x), 0.25, na.rm = na.rm,
names = FALSE)}
Q75 <- function(x, na.rm=TRUE){quantile(as.numeric(x), 0.75, na.rm = na.rm,
names = FALSE)}
describe(x.f, num.desc=c("mean", "median", "sd", "min", "max",...
2008 Apr 03
1
prettyR 25% quartile, 75% quartile
I am using the describe function in prettyR. I would like to add the
25% 75% quartiles to the summary table
how do I do this
I have tried
describe(x.f, num.desc=c("mean", "median", "sd", "min", "max",
"skewness", "quantile(x.f, na.rm=T, probs=seq(0.25, 0.75))",
"valid.n"))
help
--
Let's not spend our time
2024 Jun 12
1
my R code worked well when running the first 1000 lines of R code
...ibuted packages. At least to
those.
summary_anno1148ft <- anno1148ft %>%
tidyr::pivot_longer(c(t_depth, t_alt_count, t_alt_ratio), names_to =
"measure") %>%
dplyr::group_by(dat, measure) %>%
dplyr::summarize(minimum = min(value,na.rm=T),
q25 = quantile(value, probs = 0.25,na.rm=T),
med = median(value,na.rm=T),
q75 = quantile(value, probs = 0.75,na.rm=T),
maximum = max(value,na.rm=T),
average = mean(value,na.rm=T),
#standard_deviatio...
2024 Jun 12
3
my R code worked well when running the first 1000 lines of R code
...generated one column of summary.
Do you know why?
Thank you,
Yuan Chun Ding
summary_anno1148ft <- anno1148ft %>%
pivot_longer(c(t_depth, t_alt_count, t_alt_ratio), names_to = "measure") %>%
group_by(dat, measure) %>%
summarize(minimum = min(value,na.rm=T),
q25 = quantile(value, probs = 0.25,na.rm=T),
med = median(value,na.rm=T),
q75 = quantile(value, probs = 0.75,na.rm=T),
maximum = max(value,na.rm=T),
average = mean(value,na.rm=T),
#standard_deviation = sd(value),
.groups = "dr...
2024 Jun 12
1
my R code worked well when running the first 1000 lines of R code
...generated one column of summary.
Do you know why?
Thank you,
Yuan Chun Ding
summary_anno1148ft <- anno1148ft %>%
pivot_longer(c(t_depth, t_alt_count, t_alt_ratio), names_to = "measure") %>%
group_by(dat, measure) %>%
summarize(minimum = min(value,na.rm=T),
q25 = quantile(value, probs = 0.25,na.rm=T),
med = median(value,na.rm=T),
q75 = quantile(value, probs = 0.75,na.rm=T),
maximum = max(value,na.rm=T),
average = mean(value,na.rm=T),
#standard_deviation = sd(value),
.groups = "dr...
2012 Oct 22
0
Lattice to ggplot2: Reference graphics across facets
...library(plyr)
library(reshape2)
library(ggplot2)
library(lattice)
library(latticeExtra)
# User functions
Factor <- function(...) factor(..., levels = ...)
PAN <- function(x1, y1, x2, y2, txt, ...)
{
panel.rect(x1, y1, x2, y2)
panel.text(mean(c(x1, x2)), mean(c(y1, y2)), txt, ...)
}
q25 <- function(.x) quantile(.x, 0.25)
q75 <- function(.x) quantile(.x, 0.75)
# Create a dummy dataset
ecg <- expand.grid(
trt = Factor(c('Placebo', '100mg', '200mg', '400mg')),
subject = 1:50,
time = Factor(c('Screening', 'Pre-dos...
2012 Jul 11
4
MODE , VARIANCE , NTH PERCENTAILE
Hi,
Here i have an matrix like this,
ABC PQR XYZ MNO
------ ------- ------ --------
3 6 7 15
2 12 24 15
20 5 1 2
25 50 15 35
i need to get the
"MODE" - for each column-wise
"VARIANCE" - for
2024 Jun 12
1
my R code worked well when running the first 1000 lines of R code
...t;
> Thank you,
>
> Yuan Chun Ding
>
> summary_anno1148ft <- anno1148ft %>%
> pivot_longer(c(t_depth, t_alt_count, t_alt_ratio), names_to = "measure")
> %>%
> group_by(dat, measure) %>%
> summarize(minimum = min(value,na.rm=T),
> q25 = quantile(value, probs = 0.25,na.rm=T),
> med = median(value,na.rm=T),
> q75 = quantile(value, probs = 0.75,na.rm=T),
> maximum = max(value,na.rm=T),
> average = mean(value,na.rm=T),
> #standard_deviation = sd(value),
>...
2003 Mar 25
4
Fixed Quantizer - Fixed Quality
...-------------------
>
> 3) Two-pass-encoding with varying quantizer can lead to better overall
> quality than fixed quantizer encoding.
>
> E.g.: Encode Barcelona with Quant 25, but Suzie with quant 8.
> Total size will be similar:
>
> Suzie-Q8: 275442 + Barcelona-Q25: 347980 = Total 623422
> Suzie-Q20: 115378 + Barcelona-Q20: 550760 = Total 666138
>
> But visual quality makes a real difference as you can see
> from th other
> attached pictures: Barcelona-Q25 isn't too much worse than Q20.
> Suzie-Q8 is _much_ better than Q2...