search for: pelgev

Displaying 3 results from an estimated 3 matches for "pelgev".

Did you mean: pegged
2010 Feb 22
1
lmom: plotting log Pearson Type III
...32100, 27000, 24800, 28000, 35000, 32000, 25000, 15800, 28800, 29900, 28000, 25600, 19700, 25700, 29500, 26800, 30000, 29500) # estimate moments moments = samlmu(mackenzieRiver, sort.data = TRUE) log.moments <- samlmu( log(mackenzieRiver), sort.data = TRUE ) # estimate parameters parGEV <- pelgev(moments) # GEV parPE3 <- pelpe3(moments) # Pearson parLPE3 <- pelpe3(log.moments) # log Pearson # plot result evplot(mackenzieRiver, rp.axis = TRUE) evdistq(quagev, parGEV, col = 'black') evdistq(quape3, parPE3, col = 'blue') # estimate 1:100 yr event flood.est <- lis...
2008 Dec 16
2
Parameter Estimation - Generalized Extreme Value Distribution
Dear R helpers, How do you estimate the (Location, Scale, Shape) parameters of Generalized Extreme Value distribution using R? I have tried VGAM but just not able to write the R script. Please advise. With regards Maithili
2012 Oct 12
0
(no subject)
Hi All, I am performing GEV analysis on temperature/precipitation data using L moments: dim(data) [1] 145 192 156 Lmoments <- apply(data, 1:2, function(x) samlmu(x,nmom=4,sort.data=TRUE)) params_GEV <- apply(Lmoments,2:3,pelgev) location <- params_GEV[1,,] (xi) scale <- params_GEV[2,,] (alpha) shape <- params_GEV[3,,] (k) I want to use the ks.boot function but I am unsure of how to implement it using the pgev distribution. For example: ks.test(data[1,1],pgev,shape[1,1],location[1,1],scale[1,1]) ks.b...