Displaying 5 results from an estimated 5 matches for "pca2".
Did you mean:
  pca
  
2011 Nov 28
2
Principal componet plot from lower triangular matrix file
...2) compute first and second principal
components and 3) and plot first vs second PC's ?
In the past, I could do this by :
b <- read.csv("distance.csv", sep=",", head=F)  # distance.csv file is
complete data matrix, so this command worked !!
my_matrix <- data.matrix(b)
pca2 <- princomp(my_matrix)
plot(pca2$scores[,1],pca2$scores[,2])
text(pca2$scores[,1],pca2$scores[,2],rownames(nba_matrix), cex=0.5, pos=1)
This time, I don't have a complete file. So, I was wondering, how to do this
?
Any help is much appreciated
TIA
M
--
View this message in context: http:...
2013 Oct 01
5
Análisis de componentes principales con ade4 y FactoMineR
....57
4    -14.12    -1.71
5    -16.32    4.22
6    -17.03    5.94
7    -16.90    3.68
8    -17.75    5.86
9    13.86    -13.33
10    13.16    -12.71
11    13.24    -14.18
12    12.68    -13.07
13    18.43    11.67
14    17.49    10.86
15    17.82    12.43
16    19.02    11.83
Función PCA:
Comando:
PCA2 <- PCA(DATOS[,(1:ncol(DATOS))])
Individuo    Comp1    Comp2
1    -14.18    4.47
2    -14.63    4.53
3    -14.77    2.57
4    -14.12    1.71
5    -16.32    -4.22
6    -17.03    -5.94
7    -16.90    -3.68
8    -17.75    -5.86
9    13.86    13.33
10    13.16    12.71
11    13.24    14.18
12    12....
2013 Oct 01
3
Análisis de componentes principales con ade4 y FactoMineR
...-1.71 
5    -16.32    4.22 
6    -17.03    5.94 
7    -16.90    3.68 
8    -17.75    5.86 
9    13.86    -13.33 
10    13.16    -12.71 
11    13.24    -14.18 
12    12.68    -13.07 
13    18.43    11.67 
14    17.49    10.86 
15    17.82    12.43 
16    19.02    11.83 
Función PCA: 
Comando: 
PCA2 <- PCA(DATOS[,(1:ncol(DATOS))]) 
Individuo    Comp1    Comp2 
1    -14.18    4.47 
2    -14.63    4.53 
3    -14.77    2.57 
4    -14.12    1.71 
5    -16.32    -4.22 
6    -17.03    -5.94 
7    -16.90    -3.68 
8    -17.75    -5.86 
9    13.86    13.33 
10    13.16    12.71 
11    13.24    14....
2013 Oct 01
0
Análisis de componentes principales con ade4 y FactoMineR
...-16.90    3.68
> 8    -17.75    5.86
> 9    13.86    -13.33
> 10    13.16    -12.71
> 11    13.24    -14.18
> 12    12.68    -13.07
> 13    18.43    11.67
> 14    17.49    10.86
> 15    17.82    12.43
> 16    19.02    11.83
>
> Función PCA:
>
> Comando:
> PCA2 <- PCA(DATOS[,(1:ncol(DATOS))])
>
> Individuo    Comp1    Comp2
> 1    -14.18    4.47
> 2    -14.63    4.53
> 3    -14.77    2.57
> 4    -14.12    1.71
> 5    -16.32    -4.22
> 6    -17.03    -5.94
> 7    -16.90    -3.68
> 8    -17.75    -5.86
> 9    13.86    13....
2013 Oct 02
0
Análisis de componentes principales con ade4 y FactoMineR
...-12.71
>>> 11    13.24    -14.18
>>> 12    12.68    -13.07
>>> 13    18.43    11.67
>>> 14    17.49    10.86
>>> 15    17.82    12.43
>>> 16    19.02    11.83
>>>
>>> Función PCA:
>>>
>>> Comando:
>>> PCA2 <- PCA(DATOS[,(1:ncol(DATOS))])
>>>
>>> Individuo    Comp1    Comp2
>>> 1    -14.18    4.47
>>> 2    -14.63    4.53
>>> 3    -14.77    2.57
>>> 4    -14.12    1.71
>>> 5    -16.32    -4.22
>>> 6    -17.03    -5.94
>>&g...