search for: pca2

Displaying 5 results from an estimated 5 matches for "pca2".

Did you mean: pca
2011 Nov 28
2
Principal componet plot from lower triangular matrix file
...2) compute first and second principal components and 3) and plot first vs second PC's ? In the past, I could do this by : b <- read.csv("distance.csv", sep=",", head=F) # distance.csv file is complete data matrix, so this command worked !! my_matrix <- data.matrix(b) pca2 <- princomp(my_matrix) plot(pca2$scores[,1],pca2$scores[,2]) text(pca2$scores[,1],pca2$scores[,2],rownames(nba_matrix), cex=0.5, pos=1) This time, I don't have a complete file. So, I was wondering, how to do this ? Any help is much appreciated TIA M -- View this message in context: http:...
2013 Oct 01
5
Análisis de componentes principales con ade4 y FactoMineR
....57 4 -14.12 -1.71 5 -16.32 4.22 6 -17.03 5.94 7 -16.90 3.68 8 -17.75 5.86 9 13.86 -13.33 10 13.16 -12.71 11 13.24 -14.18 12 12.68 -13.07 13 18.43 11.67 14 17.49 10.86 15 17.82 12.43 16 19.02 11.83 Función PCA: Comando: PCA2 <- PCA(DATOS[,(1:ncol(DATOS))]) Individuo Comp1 Comp2 1 -14.18 4.47 2 -14.63 4.53 3 -14.77 2.57 4 -14.12 1.71 5 -16.32 -4.22 6 -17.03 -5.94 7 -16.90 -3.68 8 -17.75 -5.86 9 13.86 13.33 10 13.16 12.71 11 13.24 14.18 12 12....
2013 Oct 01
3
Análisis de componentes principales con ade4 y FactoMineR
...-1.71 5 -16.32 4.22 6 -17.03 5.94 7 -16.90 3.68 8 -17.75 5.86 9 13.86 -13.33 10 13.16 -12.71 11 13.24 -14.18 12 12.68 -13.07 13 18.43 11.67 14 17.49 10.86 15 17.82 12.43 16 19.02 11.83 Función PCA: Comando: PCA2 <- PCA(DATOS[,(1:ncol(DATOS))]) Individuo Comp1 Comp2 1 -14.18 4.47 2 -14.63 4.53 3 -14.77 2.57 4 -14.12 1.71 5 -16.32 -4.22 6 -17.03 -5.94 7 -16.90 -3.68 8 -17.75 -5.86 9 13.86 13.33 10 13.16 12.71 11 13.24 14....
2013 Oct 01
0
Análisis de componentes principales con ade4 y FactoMineR
...-16.90 3.68 > 8 -17.75 5.86 > 9 13.86 -13.33 > 10 13.16 -12.71 > 11 13.24 -14.18 > 12 12.68 -13.07 > 13 18.43 11.67 > 14 17.49 10.86 > 15 17.82 12.43 > 16 19.02 11.83 > > Función PCA: > > Comando: > PCA2 <- PCA(DATOS[,(1:ncol(DATOS))]) > > Individuo Comp1 Comp2 > 1 -14.18 4.47 > 2 -14.63 4.53 > 3 -14.77 2.57 > 4 -14.12 1.71 > 5 -16.32 -4.22 > 6 -17.03 -5.94 > 7 -16.90 -3.68 > 8 -17.75 -5.86 > 9 13.86 13....
2013 Oct 02
0
Análisis de componentes principales con ade4 y FactoMineR
...-12.71 >>> 11 13.24 -14.18 >>> 12 12.68 -13.07 >>> 13 18.43 11.67 >>> 14 17.49 10.86 >>> 15 17.82 12.43 >>> 16 19.02 11.83 >>> >>> Función PCA: >>> >>> Comando: >>> PCA2 <- PCA(DATOS[,(1:ncol(DATOS))]) >>> >>> Individuo Comp1 Comp2 >>> 1 -14.18 4.47 >>> 2 -14.63 4.53 >>> 3 -14.77 2.57 >>> 4 -14.12 1.71 >>> 5 -16.32 -4.22 >>> 6 -17.03 -5.94 >>&g...