search for: pbcseq

Displaying 4 results from an estimated 4 matches for "pbcseq".

Did you mean: cseq
2010 Dec 10
1
survreg vs. aftreg (eha) - the relationship between fitted coefficients?
...ith left truncation I hope) library(survival) library(eha) # COMPARE coefs between survreg ('survival' pkg) and aftreg ('eha' pkg) #Fitting NULL models (no covariates) results in (approximately) the same coefs (which is good!) m1_NULL=survreg(Surv(futime/365, status==1) ~ 1, data=pbcseq) m2_NULL=aftreg(Surv(futime/365, status==1) ~ 1, data=pbcseq) c(m1_NULL$coef, 1/m1_NULL$scale) #--> intercept= 3.878656 , shape = 1.478177 c(m2_NULL$coef[1], exp(m2_NULL$coef[2])) #--> intercept= 3.878859 , shape=1.478150 # NOW I adjust for covariates m1=survreg(Surv(futime/365, status...
2003 Aug 04
1
coxph and frailty
...llowing model, using the Pbc data (with time-varying covariates) from Therneau and Grambsch's book: fitf <- coxph(Surv(start,stop,event==2) ~ age + log(bili) + log(protime) + log(albumin) + edema + frailty(group), na.action=na.exclude, data=Pbcseq) Then I obtain: > fitf[10] $frail [1] 0.06273372 0.16192093 0.10050877 0.37716999 -0.20853156 -0.71887977 [7] -0.10922275 And: > fitf[11] $fvar [1] 0.03631634 0.03261972 0.03750465 0.04459689 0.05113802 0.08107876 0.11482236 My understanding is that fitf$frail are the group level fr...
2024 Jun 15
1
Hard crash of lme4 in R-devel
...-6 loaded via a namespace (and not attached): [1] minqa_1.2.5 MASS_7.3-60.2 compiler_4.5.0 Rcpp_1.0.11 splines_4.5.0 [6] nlme_3.1-164 grid_4.5.0 nloptr_2.0.3 boot_1.3-30 lattice_0.22-6 > > # Create a data set of all PBC subjects with 4 or more values > count <- table(pbcseq$id) > data4 <- subset(pbcseq, id %in% names(count)[count>3]) > data4$year <- data4$day/365.25 > > fit <- lmer(log(bili) ~ year + (1+year | id), data4) -- more lines than I can capture -- = NULL, verbose = 0L, control = list(optimizer = "nloptwrap", restart_ed...
2010 Dec 11
0
is there a packge or code to generate markov chains in R
...ith left truncation I hope) library(survival) library(eha) # COMPARE coefs between survreg ('survival' pkg) and aftreg ('eha' pkg) #Fitting NULL models (no covariates) results in (approximately) the same coefs (which is good!) m1_NULL=survreg(Surv(futime/365, status==1) ~ 1, data=pbcseq) m2_NULL=aftreg(Surv(futime/365, status==1) ~ 1, data=pbcseq) c(m1_NULL$coef, 1/m1_NULL$scale) #--> intercept= 3.878656 , shape = 1.478177 c(m2_NULL$coef[1], exp(m2_NULL$coef[2])) #--> intercept= 3.878859 , shape=1.478150 # NOW I adjust for covariates m1=survreg(Surv(futime/365, status...