search for: p_inv

Displaying 1 result from an estimated 1 matches for "p_inv".

Did you mean: p_in
2010 Jul 17
0
Computing the power of a matrix efficiently and accurately
....seed(1234) m=500 # dimension of my matrix X=diag(rnorm(500,20,2)) # set up tridiagonal matrix for(i in 1:(m-1)) { X[i,i+1]=rnorm(1,5,1) X[i+1,i]=rnorm(1,5,1) } n=100 # the power of the matrix X i.e. X^n = X%*%X%*%X ... n times (n = 1000 in my application) X_eigen=eigen(X) P=X_eigen$vectors P_inv=solve(P) d=X_eigen$values M=diag(m) res_mult=c() res_eigen=c() for(i in 1:n) { # straightforward multiplication... M = M%*%X res_mult = rbind(res_mult, M[m,]) # eigen-decomposition... res_eigen = rbind(res_eigen, (P%*%diag(d^i)%*%P_inv)[m,]) } # Look how the diagonal element X[m,m] changes with...