Displaying 20 results from an estimated 109 matches for "nsim".
2010 Oct 13
1
(no subject)
Dear all,
I have just sent an email with my problem, but I think no one can see the red part, beacuse it is black. So, i am writing again the codes:
rm(list=ls()) #remove almost everything in the memory
set.seed(180185)
nsim <- 10
mresultx <- matrix(-99, nrow=1000, ncol=nsim)
mresultb <- matrix(-99, nrow=1000, ncol=nsim)
N <- 200
I <- 5
taus <- c(0.480:0.520)
h <- c(1:20/1000)
alpha1 <- c(1:82)
aeven1 <- alpha[2 * 1:41]
aodd1 <- alpha[-2 * 1:41]
alpha2 <- c(1:40)
aeven2 <- alpha2[2 *...
2010 Oct 07
3
quantile regression
Dear all,
I am a new user in r and I am facing some problems with the quantile regression specification. I have two matrix (mresultb and mresultx) with nrow=1000 and ncol=nsim, where I specify (let's say) nsim=10. Hence, the columns in my matrix represents each simulation of a determined variable. I need to regress each column of mresultb on mresultx. My codes are the following:
set.seed(180185)
nsim <- 10
mresultx <- matrix(-99, nrow=1000, ncol=nsim)
mresu...
2010 Oct 13
4
loop
Dear all,
I am trying to run a loop in my codes, but the software returns an error: "subscript out of bounds"
I dont understand exactly why this is happenning. My codes are the following:
rm(list=ls()) #remove almost everything in the memory
set.seed(180185)
nsim <- 10
mresultx <- matrix(-99, nrow=1000, ncol=nsim)
mresultb <- matrix(-99, nrow=1000, ncol=nsim)
N <- 200
I <- 5
taus <- c(0.480:0.520)
h <- c(1:20/1000)
codd <- c(1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,7...
2007 Oct 11
3
reason for error in small function?
...o work? Thanks. --Dale
> gen.rpoints(events, poly, 99)
> rpoints
Error: object "rpoints" not found
# test spatial data
library(splancs)
data(cardiff)
attach(cardiff)
str(cardiff)
events <- as.points(x,y)
### non-working function ####
gen.rpoints <- function(events, poly, nsim){
rpoints <- array(0, dim=c(nrow(events),2,nsim))
for (i in 1:nsim) {
rpoints[, ,i] <- csr(poly, nrow(events))
}
}
2016 Apr 25
0
use switch or function in connecting different cases.
This is my current work.Now i am trying to use a function to do the normal distribution simulation.
rm(list=ls())
t <- u<- mann<- rep(0, 45)
Nsimulation<-function(S1,S2,Sds,nSims)
{
set.seed(1)
for (sim in 1:nSims)
{
matrix_t <-matrix(0,nrow=nSims,ncol=3)
matrix_u<-matrix(0,nrow=nSims,ncol=3)
matrix_mann <-matrix(0,nrow=nSims,ncol=3)
#gen...
2006 Jul 20
1
Loss of numerical precision from conversion to list ?
...00000e+00 4.00000e+00 4.00000e+00
#[11] 4.00000e+00 4.00000e+00 4.00000e+00 4.00000e+00 4.00000e+00 4.00000e+00 4.00000e+00 4.00000e+00 4.00000e+00 4.00000e+00
#[21] 4.00000e+00 4.00000e+00 4.00000e+00 4.00000e+00 4.00000e+00 4.00000e+00 5.77316e-15
# ! Notice the last (27th) value very close to 0
nsim<-10
set.seed(10)
#nsim x K array of ChiSq(1)-variates
w.k.sq.mat<-matrix(rchisq(nsim*K,1),nrow=nsim)
#nsim x 1 array of ChiSq(n-p-K)-variates
w.sum2<-rchisq(nsim,n-p-K)
### vectorized computation of nsim=10 realizations
### of a part of the RLR-statistic under the Nu...
2016 Apr 25
2
R: use switch or function in connecting different cases.
...written 11 codes separately for all of the cases. But i have been told that it can all been done within one code.
can anyone give me a brief idea on it.
I just managed to write till here and it perhaps isnt correct ..
#set up matrix for storing data from simulation
matrix_t <-matrix(0,nrow=nSims,ncol=3)
matrix_u<-matrix(0,nrow=nSims,ncol=3)
matrix_mann <-matrix(0,nrow=nSims,ncol=3)
sample_sizes<-
matrix(c(10,10,10,25,25,25,25,50,25,100,50,25,50,100,100,25,100,100),
nrow=2)
p1<-p2<-p3<-vector()
nSims<-10
alpha<-0.05
set.seed(1)...
2003 Oct 28
1
error message in simulation
...use R 1.8.0 and Windows XP professional. My computer has a Pentium 4 2.4
with 512 MB memory.
Thanks in advance.
best regards,
Yu-Kang Tu
Clinical Research Fellow
Leeds Dental Institute
University of Leeds
## change scores simulation
close.screen(all=TRUE)
split.screen(c(3,3))
nitns<-10000
nsims<-100
r<-0.1
param1<-c(1:nitns)
param2<-c(1:nitns)
param3<-c(1:nitns)
param4<-c(1:nitns)
param5<-c(1:nitns)
param6<-c(1:nitns)
param7<-c(1:nitns)
param8<-c(1:nitns)
param9<-c(1:nitns)
param10<-c(1:nitns)
param11<-c(1:nitns)
param12<-c(1:nitns)
param13<-c...
2011 Nov 07
1
How do I return to the row values of a matrix after computing distances
## Package Needed
library(fields)
## Assumptions
set.seed(123)
nsim<-5
p<-2
## Generate Random Matrix G
G <- matrix(runif(p*nsim),nsim,p)
## Set Empty Matraces dmax and dmin
dmax<- matrix(data=NA,nrow=nsim,ncol=p)
dmin<- matrix(data=NA,nrow=nsim,ncol=p)
## Loop to Fill dmax and dmin
for(i in 1:nsim) {
dmax[i]<- max(rdist(G[i,,drop=FALSE]...
2016 Apr 06
0
R-dvel [robustness Simulation study of 2 sample test on several combination of factors ]
...to matrix then use a loop for sample sizes
sample_sizes<-
matrix(c(10,10,10,25,25,25,25,50,25,100,50,25,50,100,100,25,100,100),
nrow=2)
#create vector to combine all std deviations
sds<-c(4,6,8,10,12,14)
# this number is needed below
nsds<-length(sds)
set.seed(8)
#number of simulations
nSims<-10000
#set significance level,alpha for the whole simulatio
alpha<-0.05
#set empty vector of length no.of _calculations_ to store p-values
# Note: you have 54 calculations, not 10000
ncalcs<-dim(sample_sizes)[2]*nsds
t_equal <-c(rep(0,length=ncalcs))
t_unequal <-c(rep(0,length=nca...
2011 Feb 17
1
How to speed up a for() loop
Dear all,
Does anyone have any idea on how to speed up the for() loop below.
Currently it takes approximately 2 minutes and 30 seconds.
Because of the size of Nsim and N, simulating a multivariate normal
(instead of simulating Nsim times a vector of N normal distributions)
would require too much memory space.
Many thanks for your kind help,
Simona
N=3000
PD=runif(N,0,1)
cutoff.=qnorm(PD)
rho.=0.1
Nsim=100000
simPD.vec=0*(1:Nsim)
systemic = rnorm(Nsim,0...
2002 Feb 11
0
profile
...Nstar<-pmax ( 0,Nstar)
Ystar<-ifelse(Nstar<1, (1 + gN*(1 - Nstar))* Nstar^(gN), 1)
Ystar<-pmax ( 0, Ystar)
Y.model <- Ystar*Ymax
Y.model
}
# simulate experimental data for predictors
nsim <- 300
Popn <- rnorm(nsim,PopStd,0.1*PopStd)
Dmax <- rnorm(nsim,140.68,47.45)
AWC <- rnorm(nsim,186.86,47.41)
SumEp <- rnorm(nsim,318.54,32.53)
PotYield3 <- rnorm(nsim,0.16180,0.01167)
Nsoil <- rnorm(nsim,94.07,34.06)
Bdfi...
2016 Apr 06
0
R-dvel [robustness Simulation study of 2 sample test on several combination of factors ]
...es<-
> matrix(c(10,10,10,25,25,25,25,50,25,100,50,25,50,100,100,25,100,100),
> nrow=2)
>
> #create vector to combine all std deviations
> sds<-c(4,6,8,10,12,14)
> # this number is needed below
> nsds<-length(sds)
> set.seed(8)
>
> #number of simulations
> nSims<-10000
> #set significance level,alpha for the whole simulatio
> alpha<-0.05
>
> #set empty vector of length no.of _calculations_ to store p-values
> # Note: you have 54 calculations, not 10000
> ncalcs<-dim(sample_sizes)[2]*nsds
> t_equal <-c(rep(0,length=ncalcs))...
2006 Mar 08
1
power and sample size for a GLM with Poisson response variable
...ches give much different power
> estimates (96% vs. 55% or so). My problem may be better addressed
> as binomial logistic regression, maybe then the simulation and the
> asymptotic estimates my agree better.
>
> sim.pwr<-function(means=c(0.0065,0.0003),ptime=c(1081,3180),nsim=1000)
> { # a two group poisson regression power computation # based
> simulating lots of Poisson r.v.'s # input rates followed by a vector
> of the corresponding person times # the most time consuming part is
> the r.v. generation.
> # power is determined by counting the how...
2007 Dec 04
1
Metropolis-Hastings within Gibbs coding error
Dear list,
After running for a while, it crashes and gives the following error message: can anybody suggest how to deal with this?
Error in if (ratio0[i] < log(runif(1))) { :
missing value where TRUE/FALSE needed
################### original program ########
p2 <- function (Nsim=1000){
x<- c(0.301,0,-0.301,-0.602,-0.903,-1.208, -1.309,-1.807,-2.108,-2.71) # logdose
n<-c(19,20,19,21,19,20,16,19,40,81) # total subject in dose-response experiment
y<-c(19,18,19,14,15,4,0,0,0,2) # success in each trials
dta<-cbind(x,n,y)
dta<-as.data.frame(dta) # creating data f...
2009 Sep 02
1
problem in loop
Hi R-users,
I have a problem for updating the estimates of correlation coefficient in simulation loop.
I want to get the matrix of correlation coefficients (matrix, name: est) from geese by using loop(500 times) .
I used following code to update,
nsim<-500
est<-matrix(ncol=2, nrow=nsim)
for(i in 1:nsim){
fit <- geese(x ~ trt, id=subject, data=data_gee, family=binomial, corstr="exch", scale.fix=TRUE)
.............
corr_gee<-summary(fit)$correlation[1]
se_corrgee<-summary(fit)$correlation[2]
est[i,]<-c(corr_gee, se_cor...
2012 Nov 23
1
Spatstat: Mark correlation function
...e now started to use the following code to perform 1000 Monte Carlo
simulations of Complete Spatial Randomness (CSR). It is a Monte Carlo test
based on envelopes of the Mark correlation function obtained from simulated
point patterns, normally used for Ripley's K:
ME<-envelope(A, markcorr, nsim = 1000)
And I produce the figure below.
My question is: Is this a justified use of nsim if the envelope is based on
simulations of CSR? Or should I display the Mark correlation function
without the envelopes?
<http://r.789695.n4.nabble.com/file/n4650579/MARKCORR_FOR_R_FORUM.png>
Thanks,...
2007 Oct 03
2
Speeding up simulation of mean nearest neighbor distances
...hrough nth
nearest neighbor distances for a random spatial pattern using the
functions nndist() and runifpoint() from spatsat. It works, but runs
relatively slowly - would appreciate suggestions on how to speed up
this function. Thanks. --Dale
library(spatstat)
sim.nth.mdist <- function(nth,nsim) {
D <- matrix(ncol=nth, nrow=nsim)
for (i in 1:nsim) {
rpp <- runifpoint(22, win=owin(c(0,1),c(0,1)), giveup=1000)
for (k in 1:nth) D[i,k] <- mean(nndist(rpp ,k=k))
}
D
}
sim.nth.mdist(5,100)
2008 Apr 08
1
Weibull maximum likelihood estimates for censored data
...le(lLne,start = list(A = 0.02))
Lw <- lLnw(coef(fit1)) # Maximum log likelihood :
Weibull
Le <- lLne(coef(fit2)) # Maximum log likelihood :
Exponential
LR0 <- (Le/Lw) # Likelihood ratio with duration
sample
NSimM <- cbind(as.matrix(sort(rchisq(nsim,1,0))),runif(nsim,0,1)) #
chi-square df1 simulations, uniform rvs
Uniftest <- runif(1,0,1)
firstrow <- cbind(LR0,Uniftest) #
use sample LR as LR
NSimM <- rbind(firstrow,NSimM)
Test <- matrix(rep(0,2*(ns...
2006 Feb 06
3
power and sample size for a GLM with poisson response variable
Hi all,
I would like to estimate power and necessary sample size for a GLM with
a response variable that has a poisson distribution. Do you have any
suggestions for how I can do this in R? Thank you for your help.
Sincerely,
Craig
--
Craig A. Faulhaber
Department of Forest, Range, and Wildlife Sciences
Utah State University
5230 Old Main Hill
Logan, UT 84322
(435)797-3892