Displaying 11 results from an estimated 11 matches for "ncoefficients".
Did you mean:
coefficients
2003 Jul 30
2
Comparing two regression slopes
...lm1$model[,2]^2) * sum(lm2$model[,2]^2)
F.val <-(as.numeric(coefficients(lm1)[2]) - as.numeric(coefficients(lm2)
[2]))^2/((SSall/SSprod)*sigma)
p.val <-1-pf(F.val, 1, (lm1$df.residual + lm2$df.residual-4))
cat("\n\nTest for equality between two regression slopes\n\n")
cat("\nCoefficients model 1:\n\n")
print(coef1)
cat("\nCoefficients model 2:\n\n")
print(coef2)
cat("\nF-value on 1 and", lm1$df.residual + lm2$df.residual-4, "degrees of
freedom:" ,F.val, "\n")
cat("p =", ifelse(p.val>=0.0001, p.val, "< 0.0001"...
2005 Feb 20
1
logistic regression and 3PL model
...ercept) {x <- cbind(1,x); dn <- c("(Intercept)", dn)}
if(is.factor(y)) y <- (unclass(y) !=1)
fit <- nlminb(start, fmin, gmin, X=x, y=y, w=wt, method =
"BFGS", ...)
names(fit$par) <- dn
cat("\nCoefficients:\n"); print(fit$par)
# R: use fit$value and fit$convergence
cat("\nResidual Deviance:", format(fit$objective), "\n")
cat("\nConvergence message:", fit$message, "\n")
invisible(fit)...
2013 Feb 14
2
Plotting survival curves after multiple imputation
...ject$df
pval <- 2 * pt(abs(tval), df, lower.tail = FALSE)
coefmat <- cbind(est, se, tval, pval)
colnames(coefmat) <- c("Estimate", "Std. Error",
"t value", "Pr(>|t|)")
cat("\nCoefficients:\n")
printCoefmat( coefmat, P.values=T, has.Pvalue=T, signif.legend=T )
cat("\nFraction of information about the coefficients
missing due to nonresponse:","\n")
print(object$f)
ans <- list( coefficients=coef...
2014 Jan 06
1
Signif. codes
My question is about the "Signif. codes" , the output when I run
matcoef =cbind(fit$par, se.coef,tval,2*(1-pnorm(abs(tval))))
dimnames(matcoef)=list(names(tval),c("Estimate","Std.Error","t
value","pr(>|t|)"))
cat("\nCoefficient(s):\n")
printCoefmat(matcoef, digits=4, signif.stars = TRUE)
Coefficient(s):
Estimate
2002 Feb 22
1
Logit / ms
Hello,
I am looking for a routine to do a logistic regression. In the book
"Modern Applied Statistics with S-PLUS" a function is described which
uses the 'ms' command. Is there an analogue for R, or an alternative
approach that can accomplish the same thing?
Thanks,
John.
--
==========================================
John Janmaat
Department of Economics
Acadia
1998 May 29
0
aov design questions
...t;Max")
}
print(rq, digits = digits, ...)
}
else if (rdf > 0) {
cat("Residuals:\n")
print(resid, digits = digits, ...)
}
# if (nsingular <- df[3] - df[1])
# cat("\nCoefficients: (", nsingular, " not defined because of singularities)\n",
# sep = "")
# else
cat("\nCoefficients:\n")
print(roundfun(x$coefficients, digits = digits), quote = FALSE,
...)
cat("\nResidua...
2008 Sep 28
0
constrained logistic regression: Error in optim() with method = "L-BFGS-B"
...= wt, method =
"L-BFGS-B", lower = c(-Inf, 0.05), upper = c(Inf, Inf), ...)
#fit <- optim(start, fmin, gmin, X = x, y = y, w = wt, control =
list(trace = 6), method = "L-BFGS-B", lower = c(-Inf, 0.05), upper = c(Inf,
Inf), ...)
names(fit$par) <- dn
cat("\nCoefficients:\n"); print(fit$par)
cat("\nResidual Deviance:", format(fit$value), "\n")
if(fit$convergence > 0) cat("\nConvergence code:", fit$convergence,
"\n")
return(list(fitpar = fit$par))
invisible(fit)
}
And here is my data,
# ---------------...
2008 Sep 29
0
Logistic Regression using optim() give "L-BFGS-B" error, please help
...y = y, w = wt, method = "L-BFGS-B",
lower = c(-Inf, 0.05), upper = c(Inf, Inf), ...)
fit <- optim(start, fmin, gmin, X = x, y = y, w = wt, control = list(trace =
6), method = "L-BFGS-B", lower = c(-Inf, 0.05), upper = c(Inf, Inf), ...)
names(fit$par) <- dn
cat("\nCoefficients:\n"); print(fit$par)
cat("\nResidual Deviance:", format(fit$value), "\n")
if(fit$convergence > 0) cat("\nConvergence code:", fit$convergence, "\n")
return(list(fitpar = fit$par))
invisible(fit)
}
And here is my data,
# ---------------------...
2007 May 17
1
MICE for Cox model
R-helpers:
I have a dataset that has 168 subjects and 12 variables. Some of the
variables have missing data and I want to use the multiple imputation
capabilities of the "mice" package to address the missing data. Given
that mice only supports linear models and generalized linear models (via
the lm.mids and glm.mids functions) and that I need to fit Cox models, I
followed the previous
2006 Apr 16
3
second try; writing user-defined GLM link function
I apologize for my earlier posting that, unbeknownst to me before,
apparently was not in the correct format for this list. Hopefully this
attempt will go through, and no-one will hold the newbie mistake
against me.
I could really use some help in writing a new glm link function in
order to run an analysis of daily nest survival rates. I've struggled
with this for weeks now, and can at least
2008 Oct 15
0
R-help Digest, Vol 67, Issue 31
...y = y, w = wt, method = "L-BFGS-B",
lower = c(-Inf, 0.05), upper = c(Inf, Inf), ...)
fit <- optim(start, fmin, gmin, X = x, y = y, w = wt, control = list(trace =
6), method = "L-BFGS-B", lower = c(-Inf, 0.05), upper = c(Inf, Inf), ...)
names(fit$par) <- dn
cat("\nCoefficients:\n"); print(fit$par)
cat("\nResidual Deviance:", format(fit$value), "\n")
if(fit$convergence > 0) cat("\nConvergence code:", fit$convergence, "\n")
return(list(fitpar = fit$par))
invisible(fit)
}
And here is my data,
# ---------------------...