Displaying 15 results from an estimated 15 matches for "ncg_goldberg".
2007 Jun 11
2
Rounding?
I was a bit puzzed by:
> formatC(6.65,format="f",digits=1)
[1] "6.6"
So I experimented and found:
> formatC(6.6500000000000001,format="f",digits=1)
[1] "6.6"
> formatC(6.650000000000001,format="f",digits=1)
[1] "6.7"
> round(6.6500000000000001,1)
[1] 6.7
> round(6.650000000000001,1)
[1] 6.7
> version
2004 Jan 26
0
Significances of Korrelations and Sweave
...}{$M$} &
\multicolumn{1}{r}{$SD$} &
\multicolumn{1}{r}{Varianz}
\ML
<<echo=false,results=tex>>=
for (i in 3:ncol(scales)) {
...
}
@
\LL
}
LaTeX gives me an Error when there is an environment inside ctable.
Thanks in advance.
[1] http://docs.sun.com/source/806-3568/ncg_goldberg.html
Stefan
2004 Dec 14
1
increase thr range in R
Hello Everybody in order to get some needed results out of my function i
need to get my besselI function evaluated at some values which normally gave
Inf or 0 (expon.scaled NAN) back. So I would like to increase the range in R
from approxamittly 1e+320 to aabout 1e+500 or something like that. Is there
any possibility or pacckage to do this easily?
Thank You
Sebastian Kaiser
Institut for Statistics
2008 Jul 17
0
Re : float and double precision with C code
...voy? le : Jeudi, 17 Juillet 2008, 14h56mn 01s
Objet : Re: [R] float and double precision with C code
FAQ 7.31
Also read
"What Every Computer Scientist Should Know About Floating-Point
Arithmetic", ACM Computing Surveys, 23/1, 5?48, also available via
http://docs.sun.com/source/806-3568/ncg_goldberg.html.
On Thu, Jul 17, 2008 at 8:47 AM, JS Ubei <jsubei at yahoo.fr> wrote:
> Hi all,
>
> There is a mistake for wich I need your ligths :
>
> ///////////////////////////////////////
>
> I have a small C code :
>
> SEXP testData()
> {
> SEXP result;
>...
2011 Apr 24
2
random roundoff?
On my CentOS 5 box, in a C++ program that does much arithmetic,
including numerous matrix multiplications, I have a situation in
in which the result depends on the nature of nearby I/O. Thus,
with all arithmetic done with type double, and where values
are mostly in the range [-1.0e0,+1.0e0] or nearby, I do:
cerr << "some stuff" << endl;
mat3 = matmult(mat1,mat2);
I
2007 Sep 24
2
a bug when subtracting vectors?
Hi,
I am calling in some data into R via the read.table function. The 'tail' of
this data reads
> tail(data)
Date Open High Low Close Volume
3728 Fri 14-Sep-07 114.19 114.46 113.93 114.08 1117992
3729 Mon 17-Sep-07 113.99 114.37 113.91 114.27 899671
3730 Tue 18-Sep-07 114.30 114.32 113.47 113.85 1346282
3731 Wed 19-Sep-07 113.71 113.71
2005 Aug 16
2
bug? (PR#8074)
Full_Name: Paul Mosquin
Version: 2.1.1
OS: Windows XP
Submission from: (NULL) (24.225.66.48)
I just don't understand this:
>(2*2)==4
[1] TRUE
> .2*.2
[1] 0.04
> (.2*.2)==.04
[1] FALSE
or
> x=.04
> x
[1] 0.04
> y=.2*.2
> y
[1] 0.04
> y==x
[1] FALSE
2008 Jul 17
0
Re : Re : float and double precision with C code
...voy? le : Jeudi, 17 Juillet 2008, 14h56mn 01s
Objet : Re: [R] float and double precision with C code
FAQ 7.31
Also read
"What Every Computer Scientist Should Know About Floating-Point
Arithmetic", ACM Computing Surveys, 23/1, 5?48, also available via
http://docs.sun.com/source/806-3568/ncg_goldberg.html.
On Thu, Jul 17, 2008 at 8:47 AM, JS Ubei <jsubei at yahoo.fr> wrote:
> Hi all,
>
> There is a mistake for wich I need your ligths :
>
> ///////////////////////////////////////
>
> I have a small C code :
>
> SEXP testData()
> {
> SEXP result;
>...
2005 Oct 11
3
Is this correct?
Dear userR,
With the following results, are they correct or acceptable?
> x <- c(1.4, 1.2, 2.8)
> sum(x)
[1] 5.4
> sum(x) == 5.4
[1] FALSE
> (1.4 + 1.2 + 2.8) - 5.4
[1] -8.881784e-16
> (1.4 + 1.2) - 2.6
[1] -4.440892e-16
> 2.6 - 1.5 - 1.1
[1] 0
> version
_
platform i386-pc-mingw32
arch i386
os mingw32
system i386, mingw32
status
major 2
minor
2003 Mar 15
3
round() seems inconsistent when rounding 5s
It may be my lack of unerstanding, but round() seems to me to give
inconsistent results when rounding 5s as in the following examples?
> round(1.45, 1)
[1] 1.4 # OK
> round(2.45, 1)
[1] 2.5 # shouldn't this be 2.4?
> round(1.05, 1)
[1] 1.1 # 1.0 ?
and signif():
> signif(2.445, 3)
[1] 2.44 # OK
> signif(3.445, 3)
[1]
2008 Jul 17
5
calculate differences - strange outcome
Dear List,
I ran into some trouble by calculating differences. For me it is
important that differences are either 0 or not.
So I don't understand the outcome of this calculation
865.56-(782.86+0+63.85+18.85+0)
[1] -1.136868e-13
I run R version 2.71 on WinXP
I could solve my problem by using
round()
but I would like to know the reason.
Maybe someone can help me?
Thanx
2004 Nov 11
5
wrong answer for simple expressions
I am experiencing strange (to me) output when trying to do simple
calculations. Expressions that should equal zero yield non-zero
values.
Examples:
> a <- 4.1-3.1
> b <- 5.1-4.1
> a-b
[1] -4.440892e-16
> (4.1-3.1)-(5.1-4.1)
[1] -4.440892e-16
When this last expression is expanded, I get the right answer:
> 4.1-3.1-5.1+4.1
[1] 0
I am using the binary packaged version
2005 Nov 01
5
Unexpected result from binary greater than operator
Hi All,
I recently encountered results that I did not expect, exhibited by the
following code snippet:
test <- function() {
minX <- 4.2
min0 <- 4.1
sigmaG <- 0.1
Diff <- minX-min0
print(c(Diff=Diff,sigmaG=sigmaG))
cat("is Diff > sigmaG?:", Diff > sigmaG,"\n")
cat("is (4.2 - 4.1) > 0.1?:",(4.2 - 4.1) >
2010 Jun 24
5
Best way to compute a sum
> a <- 0 ; for(i in (1:200000000)) a <- a + 1/i
> b <- 0 ; for(i in (200000000:1)) b <- b + 1/i
> c <- sum(1/(1:200000000))
> d <- sum(1/(200000000:1))
> order(c(a,b,c,d))
[1] 1 2 4 3
> b<c
[1] TRUE
> c==d
[1] FALSE
I'd expected b being the largest, since we sum up the smallest
numbers first. Instead, c is the largest, which is
2007 Jan 20
4
Question about converting from square roots to decimals and back
Hi,
I apologize if there is a simple answer to this question that I've
missed. I did search the mailing list but I might not have used the
right keywords. Why does sum(A3^2) give the result of 1, but
sum(A3^2)==1 give the result of FALSE?
> A3<-matrix(nrow=3,c(1/(2^.5),1/(2^.5),0))
> A3
[,1]
[1,] 0.7071068
[2,] 0.7071068
[3,] 0.0000000
> sum(A3^2)
[1] 1
>