Displaying 3 results from an estimated 3 matches for "n_length".
Did you mean:
_length
2002 Apr 22
3
glm() function not finding the maximum
...2.45, 58.16, 176.58, 76.58, 434.12, 362.35,
102.53, 103.6, 25.23, 97.19, 88.52, 118.55, 151.9, 2.7, 156.41,
21.79, 272.27, 23.16, 32.07, 6325.23, 92.37, 8340.04, 51.08,
55.59, 94.08, 69.98, 554.13, 104.88, 170.15, 945.1, 143.52)
#Fits data to a gamma distribution using glm()
gamma1_function(data){
n_length(data)
m_summary(glm(data~1, family=Gamma(link=identity)))
shape_1/as.numeric(m$disp)
scale_as.numeric(m$coeff[1]*m$disp)
dev.res_-2*log(dgamma(data,shape=shape,scale=scale))
loglik_sum(dev.res) #actually -2 * log like
list(loglik=loglik,par=c(shape,scale))
}
#Fits data to a gamma distribution &...
2002 Jun 07
2
Hope fo help - functions, fits and for cycles
...,1.5)
dataset<-data.frame(ID,gender,age,G1,G2,G3,response)
GG<-c("G1","G2","G3")
# here I construct a function that makes a basic fit,
then updates with each variable from GG vector.
trial_function(mydata,formule,expl,distr="binomial")
{
n_length(expl)
fit.low_glm(formule, family = distr, data = mydata,
na.action = na.exclude)
for (j in 1:n)
{
fit_update(fit.low,~.+ mydata[,expl[j]])
print(mydata[,expl[j]])
}
}
result<-
trial(mydata=dataset,formule=response~gender+age,exp
l=GG,distr="gaussia...
1999 Oct 21
1
left.solve
...if (ares) {
plot(rslt$fit, rslt$res)
abline(h=0,lty=2)
if (!is.null(f)) lines(lowess(rslt$fit,rslt$res, f=f))
} else {
plot(x, y, xlab=xlab, ylab=ylab, cex=cex)
if (!is.null(f)) lines(lowess(x,y,f=f))
}
} else {
lms_summary(rslt)
e_rslt$residuals
n_length(e)
beta_rslt$coef
p_length(rslt$coef)
R_rslt$R
Q_left.solve(R, cbind(rep(1,length(x)),x))
h_as.vector((Q^2 %*% array(1, c(p, 1))))
h.res_(1 - h)
z_e/h.res
v1_e^2
z_t(Q * z)
v.res_sum(v1)
v1_(v.res - v1/h.res)/(n-p-1)
dbeta_backsolve(R, z)
si_sqrt(...