search for: my_pbo

Displaying 6 results from an estimated 6 matches for "my_pbo".

2017 Nov 21
2
Do I need to transform backtest returns before using pbo (probability of backtest overfitting) package functions?
...rations. #Following the original paper we can use the Sharpe ratio as sharpe <- function(x,rf=0.03/252) { sr <- apply(x,2,function(col) { er = col - rf return(mean(er)/sd(er)) }) return(sr)} #Now that we have the trials matrix we can pass it to the pbo function #for analysis. my_pbo <- pbo(m,s=8,f=sharpe,threshold=0) summary(my_pbo) Here's the portion i'm curious about: sr_base <- 0 mu_base <- sr_base/(252.0) sigma_base <- 1.00/(252.0)**0.5 for ( i in 1:n ) { m[,i] = m[,i] * sigma_base / sd(m[,i]) # re-scale m[,i] = m[,i] + mu_base - mean(m[,i]) # re...
2017 Nov 21
0
Do I need to transform backtest returns before using pbo (probability of backtest overfitting) package functions?
...Sharpe ratio as > > sharpe <- function(x,rf=0.03/252) { > sr <- apply(x,2,function(col) { > er = col - rf > return(mean(er)/sd(er)) > }) > return(sr)} > #Now that we have the trials matrix we can pass it to the pbo function > #for analysis. > > my_pbo <- pbo(m,s=8,f=sharpe,threshold=0) > > summary(my_pbo) > > Here's the portion i'm curious about: > > sr_base <- 0 > mu_base <- sr_base/(252.0) > sigma_base <- 1.00/(252.0)**0.5 > for ( i in 1:n ) { > m[,i] = m[,i] * sigma_base / sd(m[,i]) # re-sca...
2017 Nov 21
2
Do I need to transform backtest returns before using pbo (probability of backtest overfitting) package functions?
...t;- function(x,rf=0.03/252) { >> sr <- apply(x,2,function(col) { >> er = col - rf >> return(mean(er)/sd(er)) >> }) >> return(sr)} >> #Now that we have the trials matrix we can pass it to the pbo function >> #for analysis. >> >> my_pbo <- pbo(m,s=8,f=sharpe,threshold=0) >> >> summary(my_pbo) >> >> Here's the portion i'm curious about: >> >> sr_base <- 0 >> mu_base <- sr_base/(252.0) >> sigma_base <- 1.00/(252.0)**0.5 >> for ( i in 1:n ) { >> m[,i] =...
2017 Nov 21
0
Do I need to transform backtest returns before using pbo (probability of backtest overfitting) package functions?
...rations. #Following the original paper we can use the Sharpe ratio as sharpe <- function(x,rf=0.03/252) { sr <- apply(x,2,function(col) { er = col - rf return(mean(er)/sd(er)) }) return(sr)} #Now that we have the trials matrix we can pass it to the pbo function #for analysis. my_pbo <- pbo(m,s=8,f=sharpe,threshold=0) summary(my_pbo) Here's the portion i'm curious about: sr_base <- 0 mu_base <- sr_base/(252.0) sigma_base <- 1.00/(252.0)**0.5 for ( i in 1:n ) { m[,i] = m[,i] * sigma_base / sd(m[,i]) # re-scale m[,i] = m[,i] + mu_base - mean(m[,i]) # re...
2017 Nov 21
0
Do I need to transform backtest returns before using pbo (probability of backtest overfitting) package functions?
...t;> sr <- apply(x,2,function(col) { >>> er = col - rf >>> return(mean(er)/sd(er)) >>> }) >>> return(sr)} >>> #Now that we have the trials matrix we can pass it to the pbo function >>> #for analysis. >>> >>> my_pbo <- pbo(m,s=8,f=sharpe,threshold=0) >>> >>> summary(my_pbo) >>> >>> Here's the portion i'm curious about: >>> >>> sr_base <- 0 >>> mu_base <- sr_base/(252.0) >>> sigma_base <- 1.00/(252.0)**0.5 >>> f...
2017 Nov 21
1
Do I need to transform backtest returns before using pbo (probability of backtest overfitting) package functions?
...ion(col) { >>>> er = col - rf >>>> return(mean(er)/sd(er)) >>>> }) >>>> return(sr)} >>>> #Now that we have the trials matrix we can pass it to the pbo function >>>> #for analysis. >>>> >>>> my_pbo <- pbo(m,s=8,f=sharpe,threshold=0) >>>> >>>> summary(my_pbo) >>>> >>>> Here's the portion i'm curious about: >>>> >>>> sr_base <- 0 >>>> mu_base <- sr_base/(252.0) >>>> sigma_base &lt...