Displaying 20 results from an estimated 50 matches for "mldevianc".
Did you mean:
mldeviance
2008 Oct 16
1
lmer for two models followed by anova to compare the two models
Dear Colleagues,
I run this model:
mod1 <- lmer(x~category+subcomp+category*subcomp+(1|id),data=impchiefsrm)
obtain this summary result:
Linear mixed-effects model fit by REML
Formula: x ~ category + subcomp + category * subcomp + (1 | id)
Data: impchiefsrm
AIC BIC logLik MLdeviance REMLdeviance
4102 4670 -1954 3665 3908
Random effects:
Groups Name Variance Std.Dev.
id (Intercept) 0.11562 0.34003
Residual 0.22765 0.47713
number of obs: 2568, groups: id, 107
run this model (only difference is I've removed the interaction term):...
2006 Oct 05
1
lmer BIC changes between output and anova
...ut assocaited with the anova is right!).
thank you,
darren
> unconditional<-lmer(log50 ~ 1 + (1 | Stream:Site) + (1|Stream), data)
> summary(unconditional)
Linear mixed-effects model fit by REML
Formula: log50 ~ 1 + (1 | Stream:Site) + (1 | Stream)
Data: data
AIC BIC logLik MLdeviance REMLdeviance
-138.8 -132.8 72.42 -150.4 -144.8
> nosection<-lmer(log50 ~ 1 + meanlogATS + residuallogATS + (1 | Stream:Site) + (1|Stream), data)
> summary(nosection)
Linear mixed-effects model fit by REML
Formula: log50 ~ 1 + meanlogATS + residuallogATS + (1 | Stream:Site)...
2006 Oct 18
1
lmer- why do AIC, BIC, loglik change?
...Reaction ~ Days + (1|Subject), sleepstudy)
summary(fm1)
fm2<-lmer(Reaction ~ Days + (Days|Subject), sleepstudy)
summary(fm2)
anova(fm1, fm2)
Sample output:
> summary(fm1)
Linear mixed-effects model fit by REML
Formula: Reaction ~ Days + (1 | Subject)
Data: sleepstudy
AIC BIC logLik MLdeviance REMLdeviance
1792 1802 -893.2 1794 1786
> summary(fm2)
Linear mixed-effects model fit by REML
Formula: Reaction ~ Days + (Days | Subject)
Data: sleepstudy
AIC BIC logLik MLdeviance REMLdeviance
1754 1770 -871.8 1752 1744
> anova(fm1, fm2)
Data: sleeps...
2008 Apr 04
1
lme4: How to specify nested factors, meaning of : and %in%
...lease assume that rats are nested within
treatments, because that corresponds to the case I actually want to analyze.
> (m1<-lmer(Glycogen~Treatment+(1|Treatment/Rat/Liver)))
Linear mixed-effects model fit by REML
Formula: Glycogen ~ Treatment + (1 | Treatment/Rat/Liver)
AIC BIC logLik MLdeviance REMLdeviance
231.6 241.1 -109.8 234.9 219.6
Random effects:
Groups Name Variance Std.Dev.
Liver:(Rat:Treatment) (Intercept) 14.1617 3.7632
Rat:Treatment (Intercept) 36.0843 6.0070
Treatment (Intercept) 4.7039 2.1689
Residual...
2006 Feb 10
1
Lmer with weights
...much!
> library("R2WinBUGS")
> data(schools)
> schools
> attach(schools)
>
> ## Fit simple model without "weights"
> lmer(estimate ~ 1 + (1 | school))
Linear mixed-effects model fit by REML
Formula: estimate ~ 1 + (1 | school)
AIC BIC logLik MLdeviance REMLdeviance
58.882 59.041 -27.441 59.278 54.882
Random effects:
Groups Name Variance Std.Dev.
school (Intercept) 80.4 8.97
Residual 30.1 5.49
# of obs: 8, groups: school, 8
Fixed effects:
Estimate Std. Error t value
(Intercept) 8....
2005 Sep 19
1
How to mimic pdMat of lme under lmer?
Dear members,
I would like to switch from nlme to lme4 and try to translate some of my
models that worked fine with lme.
I have problems with the pdMat classes.
Below a toy dataset with a fixed effect F and a random effect R. I gave
also 2 similar lme models.
The one containing pdLogChol (lme1) is easy to translate (as it is an
explicit notation of the default model)
The more parsimonious
2006 Nov 21
1
lme4 model with no fixed effects?
Crossed random effects:
> lmer( y ~ (1 | i1) + (1|i2) ,data=dta)
Linear mixed-effects model fit by REML
Formula: y ~ (1 | i1) + (1 | i2)
Data: dta
AIC BIC logLik MLdeviance REMLdeviance
91.18 94.84 -42.59 85.2 85.18
Random effects:
Groups Name Variance Std.Dev.
i1 (Intercept) 0.068224 0.26120
i2 (Intercept) 0.463112 0.68052
Residual 1.469250 1.21213
number of obs: 25, groups: i1, 5; i2, 5
Fix...
2005 Apr 16
1
How to get predictions, plots, etc. from lmer{lme4}
...4.5 12 115 6 7
145 20 1.00 0.0 73 65 0 2
147 20 1.00 3.0 63 72 2 3
etc.
The output:
> summary(exp1B.both.cont.lmer)
Linear mixed-effects model fit by maximum likelihood
Formula: cbind(b, a) ~ ba + amplitude + (1 | sub)
Data: exp1B
AIC BIC logLik MLdeviance REMLdeviance
768.0086 783.2579 -379.0043 758.0086 766.3104
Random effects:
Groups Name Variance Std.Dev.
sub (Intercept) 0.18787 0.43344
Residual 6.36355 2.52261
# of obs: 156, groups: sub, 13
Fixed effects:
Estimate Std. Error DF t value...
2006 Feb 04
1
Mixed models and missing p-value...
Dear R-users,
I computed a simple mixed models which was:
mod<-lmer(nb ~ site + (1|patelle),tr)
The output was:
Linear mixed-effects model fit by REML
Formula: nb ~ site + (1 | patelle)
Data: tr
AIC BIC logLik MLdeviance REMLdeviance
1157.437 1168.686 -574.7184 1164.523 1149.437
Random effects:
Groups Name Variance Std.Dev.
patelle (Intercept) 34.995 5.9157
Residual 744.736 27.2899
# of obs: 123, groups: patelle, 33
Fixed effects:
Estimate Std. Error t value
(I...
2006 Apr 20
2
Missing p-values using lmer()
...; library(lme4)
Loading required package: Matrix
Loading required package: lattice
> reml.res <- lmer(UNDS~SUCCESSMN+(1|BIRD), dive)
> summary(reml.res)
Linear mixed-effects model fit by REML
Formula: UNDS ~ SUCCESSMN + (1 | BIRD)
Data: dive
AIC BIC logLik MLdeviance REMLdeviance
60032.37 60053.8 -30013.19 60031.9 60026.37
Random effects:
Groups Name Variance Std.Dev.
BIRD (Intercept) 4.4504 2.1096
Residual 36.4240 6.0352
number of obs: 9324, groups: BIRD, 12
Fixed effects:
Estimate Std. Error t...
2006 Jul 04
1
lmer print outs without T
Hi,
I have been having a tedious issue with lmer models with lots of
factors and lots of levels. In order to get the basic information at
the beginning of the print out I also have to generate these enormous
tables as well. Is there a method command to leave off all of the
effects and correlations? Or, do I have to go to string commands?
2006 Jul 28
3
random effects with lmer() and lme(), three random factors
...Matrix package:
fm <- lmer(y ~ (1 | Sample) + (1 | Operator) +
(1|Operator:Run), data=x)
summary(fm)
Linear mixed-effects model fit by REML
Formula: H.I.Index ~ (1 | Sample.Name) + (1 | Operator) + (1 |
Operator:Run)
Data: x
AIC BIC logLik MLdeviance REMLdeviance
96.73522 109.0108 -44.36761 90.80064 88.73522
Random effects:
Groups Name Variance Std.Dev.
Operator:Run (Intercept) 4.2718e-11 6.5359e-06
Operator (Intercept) 5.4821e-04 2.3414e-02
Sample (Intercept) 5.0352e+00 2.2439e+00
Residual...
2008 Jul 25
1
glht after lmer with "$S4class-" and "missing model.matrix-" errors
...r(length~comp+(meas|box_id),data=sv.growth)
Warning message:
In .local(x, ..., value) :
Estimated variance-covariance for factor 'box_id' is singular
> summary(model.sv)
Linear mixed-effects model fit by REML
Formula: length ~ comp + (meas | box_id)
Data: sv.growth
AIC BIC logLik MLdeviance REMLdeviance
1587 1606 -786.4 1605 1573
Random effects:
Groups Name Variance Std.Dev. Corr
box_id (Intercept) 466698.1 683.153
meas 230733.7 480.347 -1.000
Residual 9138.3 95.595
number of obs: 120, groups: box_id, 40
Fixed effects:...
2007 May 14
2
lmer function
...d this model hive the right results for the variance components?
mod_3_f <- lmer(SCORE ~ GENDER + (1 |ID ) + (1 | TERM) + (1 | SUBJECT) , Dataset)
Linear mixed-effects model fit by REML
Formula: SCORE ~ GENDER + (1 | ID) + (1 | TERM) + (1 | SUBJECT)
Data: Dataset
AIC BIC logLik MLdeviance REMLdeviance
247882 247926 -123936 247871 247872
Random effects:
Groups Name Variance Std.Dev.
ID (Intercept) 5.97288 2.44395
TERM (Intercept) 5.10307 2.25900
SUBJECT (Intercept) 0.25943 0.50934
Residual 4.41673 2.10160
number of obs: 53978,...
2005 Jun 24
1
lme4 extracting individual variance components
...ur help!
Thomas
My model:
> m1<- lmer(y ~ trtt + (trtt-1|group3) + (trtt-1|group2) +
(trtt-1|group1), d1)
> m1
Linear mixed-effects model fit by REML
Formula: y ~ trtt + (trtt - 1 | group3) + (trtt - 1 | group2) + (trtt -
1 | group1)
Data: d1
AIC BIC logLik MLdeviance REMLdeviance
1819.454 2003.915 -874.7269 1736.421 1749.454
Random effects:
Groups Name Variance Std.Dev. Corr
group1 trtt1/TR1 0.115094 0.33926
trtt1/TR2 0.338576 0.58187 0.177
trtt2/TR1 0.141726 0.37647 -0.002 -0.007...
2009 Oct 29
1
singular variance-covariance warning in lmer
...ssage:
Estimated variance-covariance for factor 'female' is singular in: `LMEoptimize<-`(`*tmp*`, value = list(maxIter = 200L, tolerance = 1.49011611938477e-08,
summary(model)
Linear mixed-effects model fit by REML
Formula: int.length ~ mean.sst + (mean.sst | female)
AIC BIC logLik MLdeviance REMLdeviance
155.4 164.5 -72.7 142.8 145.4
Random effects:
Groups Name Variance Std.Dev. Corr
female (Intercept) 6.8459e-10 2.6165e-05
mean.sst 6.8169e-10 2.6109e-05 -0.065
Residual 1.3634e+00 1.1676e+00
number of obs: 46, groups: female, 18...
2005 Oct 28
2
Random effect models
...e4)
> lme1 <- lmer(Rendement ~ (1|Pollinisateur) + (1|Lignee) + (1|Pollinisateur:Lignee), data = mca2))
> summary(lme1)
Linear mixed-effects model fit by REML
Formula: Rendement ~ (1 | Pollinisateur) + (1 | Lignee) + (1 | Pollinisateur:Lignee)
Data: mca2
AIC BIC logLik MLdeviance REMLdeviance
105.3845 118.4104 -47.69227 94.35162 95.38453
Random effects:
Groups Name Variance Std.Dev.
Pollinisateur:Lignee (Intercept) 0.033892 0.18410
Pollinisateur (Intercept) 0.118664 0.34448
Lignee (Intercept) 0.218183 0.46710
Resi...
2007 Jun 25
1
conflict between lme4 and RMySQL packages (PR#9753)
...ice
library(RMySQL)> library(RMySQL)
Loading required package: DBI
> data(sleepstudy)
> fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy)
> summary(fm1)
Linear mixed-effects model fit by REML
Formula: Reaction ~ Days + (Days | Subject)
Data: sleepstudy
AIC BIC logLik MLdeviance REMLdeviance
1754 1770 -871.8 1752 1744
Random effects:
Groups Name Variance Std.Dev. Corr
Subject (Intercept) 610.835 24.7151
Days 35.056 5.9208 0.067
Residual 655.066 25.5943
number of obs: 180, groups: Subject, 18...
2005 Jul 12
2
testing for significance in random-effect factors using lmer
Hi, I would like to know whether it is possible to obtain a value of
significance for random effects when aplying the lme or related
functions. The default output in R is just a variance and standard
deviation measurement.
I feel it would be possible to obtain the significance of these random
effects by comparing models with and without these effects. However,
I'm not used to perform
2005 Sep 07
1
FW: Re: Doubt about nested aov output
...ly Fixed Effect,with Rat and the interaction Rat:Liver as random effects
then--
> model.lmer<-lmer(Glycogen~Treatment+(1|Rat)+(1|Rat:Liver))
> summary(model.lmer)
Linear mixed-effects model fit by REML
Formula: Glycogen ~ Treatment + (1 | Rat) + (1 | Rat:Liver)
AIC BIC logLik MLdeviance REMLdeviance
239.095 248.5961 -113.5475 238.5439 227.095
Random effects:
Groups Name Variance Std.Dev.
Rat:Liver (Intercept) 2.1238e-08 0.00014573
Rat (Intercept) 2.0609e+01 4.53976242
Residual 4.2476e+01 6.51733769
# of obs: 36, groups: Rat:Liver, 6; Rat...