search for: mazumd

Displaying 4 results from an estimated 4 matches for "mazumd".

Did you mean: mazuco
2012 Mar 07
0
sparsenet: a new package for sparse model selection
We have put a new package sparsenet on CRAN. Sparsenet fits regularization paths for sparse model selection via coordinate descent, using a penalized least-squares framework and a non-convex penalty. The package is based on our JASA paper Rahul Mazumder, Jerome Friedman and Trevor Hastie: SparseNet : Coordinate Descent with Non-Convex Penalties. (JASA 2011) http://www.stanford.edu/~hastie/Papers/Sparsenet/jasa_MFH_final.pdf We use Zhang's MC+ penalty to impose sparsity in model selection. This penalty parametrizes...
2012 Mar 07
0
sparsenet: a new package for sparse model selection
We have put a new package sparsenet on CRAN. Sparsenet fits regularization paths for sparse model selection via coordinate descent, using a penalized least-squares framework and a non-convex penalty. The package is based on our JASA paper Rahul Mazumder, Jerome Friedman and Trevor Hastie: SparseNet : Coordinate Descent with Non-Convex Penalties. (JASA 2011) http://www.stanford.edu/~hastie/Papers/Sparsenet/jasa_MFH_final.pdf We use Zhang's MC+ penalty to impose sparsity in model selection. This penalty parametrizes...
2013 Apr 02
0
softImpute_1.0 uploaded to CRAN
SoftImpute is a new package for matrix completion - i.e. for imputing missing values in matrices. SoftImpute was written by myself and Rahul Mazumder. softImpute uses uses squared-error loss with nuclear norm regularization - one can think of it as the "lasso" for matrix approximation - to find a low-rank approximation to the observed entries in the matrix. This low-rank approximation is then used to impute the missing entries. sof...
2013 Apr 02
0
softImpute_1.0 uploaded to CRAN
SoftImpute is a new package for matrix completion - i.e. for imputing missing values in matrices. SoftImpute was written by myself and Rahul Mazumder. softImpute uses uses squared-error loss with nuclear norm regularization - one can think of it as the "lasso" for matrix approximation - to find a low-rank approximation to the observed entries in the matrix. This low-rank approximation is then used to impute the missing entries. sof...