Displaying 4 results from an estimated 4 matches for "lynden".
Did you mean:
linden
2018 May 12
3
(no subject)
hello
for exampl, i have this programme
# Generating data which are right truncated
library(DTDA)
library(splines)
library(survival)
n<-25
X<-runif(n,0,1)
V<-runif(n,0.75,1)
for (i in 1:n){
while (X[i]>V[i]){
X[i]<-runif(1,0,1)
V[i]<-runif(1,0.75,1)
}}
res<-lynden(X=X,U=NA, V=V, boot=TRUE)
attach(res)
temps = time
M_i = n.event
L_t = res
F_t=1-L_t??????????????????????????????????? ?
par(mfrow=c(1,1))
plot(L_t$time,L_t$survival,type="s",lty=2:3,lwd=2,las=1,cex.lab=1.1,font.lab=2,col="red",xlab="temps",ylab="L(t)",main=...
2018 May 14
0
(no subject)
hello
> p(X ? V) diffetente zero
> look this
> Let X and V be two independent random variables with unknow
>? distribution functions (d.f.?s) F and G respectively. Under truncation from the right we observe (X, Z) only if X ? Z
> I simulate X and Z and I use Lynden bell estimation
> I need now to calculate alpha =p(X ? V)but no p(X ? V)=0
>?
> >
> >
> >
> > for exampl, i have this programme
> > # Generating data which are right truncated
> > library(DTDA)
> > library(splines)
> > library(survival)
>...
2018 May 13
0
(no subject)
...# Generating data which are right truncated
> library(DTDA)
> library(splines)
> library(survival)
> n<-25
> X<-runif(n,0,1)
> V<-runif(n,0.75,1)
> for (i in 1:n){
> while (X[i]>V[i]){
> X[i]<-runif(1,0,1)
> V[i]<-runif(1,0.75,1)
> }}
> res<-lynden(X=X,U=NA, V=V, boot=TRUE)
> attach(res)
> temps = time
> M_i = n.event
> L_t = res
> F_t=1-L_t
> F_t=1-L_t
Error in 1 - L_t : non-numeric argument to binary operator
L_t is a list. You cannot subtract a list (at least in R). I'm not sur...
2018 May 10
0
(no subject)
We need some idea of the problem.
http://stackoverflow.com/questions/5963269/how-to-make-a-great-r-reproducible-example
http://adv-r.had.co.nz/Reproducibility.html
On Thursday, May 10, 2018, 11:07:30 a.m. EDT, malika yassa via R-help <r-help at r-project.org> wrote:
Hello
Do You help me, i have the problem in the package DTDA for ?find the probability of truncation