search for: lst7

Displaying 4 results from an estimated 4 matches for "lst7".

Did you mean: lst
2013 Jun 08
0
data
...) ???????? lst5<- lst4[lapply(lst4,length)>0] ??? ?lst6<- lapply(lst5,function(x) { ??? ??? ??? ??? ??? lst<- lapply(x,function(y){ ??? ??? ??? ??? ??? ??? ? y[!all(y$dummy==1),] ??? ??? ??? ??? ??? ??? ?? }) ??? ??? ??? ??? ??? lst[lapply(lst,nrow)>0] ??? ??? ??? ??? ??? }) ???????? lst7<- lapply(lst6,function(x){ ??? ??? ??? ??? ??? lst<- lapply(x,function(y) { ??? ??? ??? ??? ??? ??? x1<- y[1,] ??? ??? ??? ??? ??? ??? x2<- y[-1,] ??? ??? ??? ??? ??? ??? x3<- subset(x2,dummy==0) ??? ??? ??? ??? ??? ??? x4<- x3[which.min(abs(x1$dimension-x3$dimension)),] ??? ??? ?...
2013 Jun 04
0
choose the lines2
...!=0] ?? names(lst6)<- unlist(lapply(lst6,function(x) unique(x$patient_id))) ?? Mean_01<-do.call(rbind,lapply(lst6,function(x) cbind(Mean_Middle0=mean(x[seq(nrow(x))%%3==2,"basdai_d"]),Mean_1=mean(x[seq(nrow(x))%%3==0,"basdai_d"])))) rownames(Mean_01)<- names(lst6) ? ?? lst7<-list(lst6,Mean_01) ?? lst7 ?? #lapply(lst7,head,2)?? ?? }????????????????? fun2(dat.bru) head(fun2(dat.bru)[[1]],3) #$`2` #??? X patient_id number responsed_at? t basdai_d evnmt_brutal #13 13????????? 2???? 12?? 2011-07-05 12???? -1.0??????????? 0 #14 14????????? 2???? 13?? 2011-08-07 13????...
2013 Jun 04
0
choose the lines2
...??? ??? ??? ??? ??? ??? ??? ??? )) ??? ??? ??? ??? ??? ??? ??? ??? ??? }) ?? lst6<-lst5[lapply(lst5,nrow)!=0] ?? names(lst6)<- unlist(lapply(lst6,function(x) unique(x$patient_id))) ?? Mean0bet_01<- do.call(rbind,lapply(lst6,function(x) mean(x[seq(nrow(x))%%3==2,"basdai_d"]))) ?? lst7<-list(lst6,Mean0bet_01) ?? lst7 ?? #lapply(lst7,head,2)??? ?? }?? ??? ??? ??? ??? fun2(dat.bru) ##output from first 2 patients #[[1]] #[[1]]$`2` ?# ? X patient_id number responsed_at? t basdai_d evnmt_brutal #13 13????????? 2???? 12?? 2011-07-05 12???? -1.0??????????? 0 #14 14????????? 2??...
2013 Jun 07
4
matched samples, dataframe, panel data
I R-helpers #I have a data panel of thousands of firms, by year and industry and #one dummy variable that separates the firms in two categories: 1 if the firm have an auditor; 0 if not #and another variable the represents the firm dimension (total assets in thousand of euros) #I need to create two separated samples with the same number os firms where #one firm in the first have a corresponding