search for: logmodel

Displaying 3 results from an estimated 3 matches for "logmodel".

2011 Jan 10
1
debug biglm response error on bigglm model
...------------------') browser() print(i) print(table(iter.df$bin_varname1)) print(table(iter.df$bin_age)) print(table(iter.df$bin_util)) print(table(iter.df$bin_varname2)) #~ debug(predict.nov.2011[i] <- #~ sum(predict(logModel.1, newdata=iter.df, type='response'))) } predict.nov.2011[i] <- sum(predict(logModel.1, newdata=iter.df, type='response')) print(predict.nov.2011[i]) } Output ========== [1] 36.56073 [1] 561.4516 [1] 4.83483 [1] 5.01398 [1] 7.984146 [1] "---------...
2006 Mar 10
1
How to compare fit of linear and nonlinear models
Dear statistics experts, I'm looking for a way to compare the fit of the following three models: LinModel <- lm(y ~ x) LogModel <- nls(y ~ SSlogis(x, Asym, xmid, scal)) PotModel <- nls(y ~ a * x^n, start=list(a=1, n=1)) I am only interested in whether one of these models has substantial advances in explaining the variance of y. So my original idea was simply to compare the adjusted R squared values. This however seem...
2011 Jan 07
0
Error in x %*% coef(object) : non-conformable arguments
...------------------') browser() print(i) print(table(iter.df$bin_varname1)) print(table(iter.df$bin_age)) print(table(iter.df$bin_util)) print(table(iter.df$bin_varname2)) #~ debug(predict.nov.2011[i] <- #~ sum(predict(logModel.1, newdata=iter.df, type='response'))) } predict.nov.2011[i] <- sum(predict(logModel.1, newdata=iter.df, type='response')) print(predict.nov.2011[i]) } Output ========== [1] 36.56073 [1] 561.4516 [1] 4.83483 [1] 5.01398 [1] 7.984146 [1] "--------...