Displaying 7 results from an estimated 7 matches for "lambdat".
Did you mean:
lambda
2014 Mar 03
1
reference classes, LAZY_DUPLICATE_OK, and external pointers
...= function() {
'returns the external pointer, regenerating if necessary'
if (length(theta)) {
if (.Call(isNullExtPtr, Ptr)) initializePtr()
}
Ptr
},
## ditto
initializePtr = function() {
Ptr <<- .Call(merPredDCreate, as(X, "matrix"), Lambdat,
LamtUt, Lind, RZX, Ut, Utr, V, VtV, Vtr,
Xwts, Zt, beta0, delb, delu, theta, u0)
...
}
merPredDCreate in turn just copies the relevant bits into a new C++
class object:
/* see src/external.cpp */
SEXP merPredDCreate(SEXP Xs, SEXP Lambdat, SEXP LamtUt, SE...
2011 Dec 19
1
Calculating the probability of an event at time "t" from a Cox model fit
...the development sample data I am able to get the
probability of a event at time point(t).
I need probability score of a event at specific time, using scoring scoring
dataset which will have only covariates and not the response variables.
Here is the sample code:
n = 1000
beta1 = 2; beta2 = -1;
lambdaT = .02 # baseline hazard
lambdaC = .4 # hazard of censoring
x1 = rnorm(n,0)
x2 = rnorm(n,0)
# true event time
T = rweibull(n, shape=1, scale=lambdaT*exp(-beta1*x1-beta2*x2))
C = rweibull(n, shape=1, scale=lambdaC) #censoring time
time = pmin(T,C) #observed time is min of censored and true
even...
2012 Dec 13
2
simulate time data
Hi,
Does anyone know how to write a command to generate time-to-event data for Cox's regression?
Scomet
[[alternative HTML version deleted]]
2012 Jan 17
1
Scoring using cox model: probability of survival before time t
...on the scoring dataset, which will have only
predictor information I am facing some issues. It would be great help for me
if you tell me where am I going wrong!
Here is the sample script!
#########################################################
library(survival)
n = 100
beta1 = 3; beta2 = -2;
lambdaT = .01
lambdaC = .6
x1 = rnorm(n,0)
x2 = rnorm(n,0)
T = rweibull(n, shape=1, scale=lambdaT*exp(-beta1*x1-beta2*x2))
C = rweibull(n, shape=1, scale=lambdaC)
time = pmin(T,C)
event = time==T
train_sample=data.frame(time,event,x1,x2)
rm(time,event,x1,x2)
fit_coxph <- coxph(Surv(tim...
2013 Oct 18
0
pamer.fnc y la nueva versión de R
..." "ussq" ...
.. ..$ dims: Named int [1:12] 20 20 4 16 1 4 1 1 0 4 ...
.. .. ..- attr(*, "names")= chr [1:12] "N" "n" "p" "nmp" ...
..@ pp :Reference class 'merPredD' [package "lme4"] with 18 fields
.. ..$ Lambdat:Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
.. .. .. ..@ i : int [1:4] 0 1 2 3
.. .. .. ..@ p : int [1:5] 0 1 2 3 4
.. .. .. ..@ Dim : int [1:2] 4 4
.. .. .. ..@ Dimnames:List of 2
.. .. .. .. ..$ : NULL
.. .. .. .. ..$ : NULL
.. .. .. .....
2013 Oct 18
2
pamer.fnc y la nueva versión de R
Javier,
Creo que aquí aplica la ley de Linus que dice: "Dado un número
suficientemente elevado de ojos, todos los errores se convierten en
obvios". La persona que revisa y encuentra un error no necesariamente
tiene que ser la misma que la que lo escribe. Una motivación muy importante
al compartir un código es la de recibir los beneficios del control de
calidad por parte de tus pares.
2013 Dec 02
1
pamer.fnc y la nueva versión de R
...ot; ...
> .. ..$ dims: Named int [1:12] 20 20 4 16 1 4 1 1 0 4 ...
> .. .. ..- attr(*, "names")= chr [1:12] "N" "n" "p" "nmp" ...
> ..@ pp :Reference class 'merPredD' [package "lme4"] with 18 fields
> .. ..$ Lambdat:Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
> .. .. .. ..@ i : int [1:4] 0 1 2 3
> .. .. .. ..@ p : int [1:5] 0 1 2 3 4
> .. .. .. ..@ Dim : int [1:2] 4 4
> .. .. .. ..@ Dimnames:List of 2
> .. .. .. .. ..$ : NULL
> .. .....