search for: lambdahat

Displaying 4 results from an estimated 4 matches for "lambdahat".

2017 Dec 07
1
Seeking help with code
...ize n, bootstrap size B n = 10 b = 8000 set a vector of days of rain into "drain" drain = c(26.64, 30.65, 31.27, 33.04, 32.56, 29.10, 28.96, 26.44, 27.76, 32.27) #calculate mean of the sample for days of rain mdr=mean(drain) mdr #calculate the parameter of the exponential distribution lambdahat = 1.0/mdr lambdahat #draw the bootstrap sample from Exponential x = rexp(n*b, lambdahat) x bootstrapsample = matrix(x, nrow=n, ncol=b) bootstrapsample # Compute the bootstrap lambdastar lambdastar = 1.0/colMeans(bootstrapsample) lambdastar # Compute the differences deltastar = lambdastar - lamb...
2010 Sep 07
1
boundary correction - univariate kernel density estimation
Hey, Does anyone know of a package in R that provides univariate kernel density estimation with boundary correction ? or how to easily extend an existing bivariate kernel density estimation function (e.g. lambdahat in the spatialkernel package) with boundary corrections to allow univariate density estimation? Thanks a lot, Steve B. -- View this message in context: http://r.789695.n4.nabble.com/boundary-correction-univariate-kernel-density-estimation-tp2529963p2529963.html Sent from the R help mailing lis...
2013 Mar 31
0
Standard error of normalmixEM fit?
...om/?file_id=09285782882980618119 My code: normalmix<-normalmixEM(dat,k=2,lambda=c(0.99024,(1-0.99024)),fast=FALSE,maxit=10000,epsilon = 1e-16,maxrestarts=1000) normalmix$loglik normalmix$lambda se<-boot.se(normalmix,B=1000) se$lambda.se se$mu.se se$sigma.se final results: lambdahat = 0.990238663 mu1hat= -0.00115 mu2hat= 0.040176949 sigma1hat= 0.012220305 sigma2hat= 0.003247102 My problem now is - and thats why I feel uncomfortable about relying on the values - that the output of boot.se(normalmix) varies quite strong. So without changing the code and rerun it (with the...
2013 Apr 04
0
Std. error of normalmixEM with boot.se
...om/?file_id=09285782882980618119 My code: normalmix<-normalmixEM(dat,k=2,lambda=c(0.99024,(1-0.99024)),fast=FALSE,maxit=10000,epsilon = 1e-16,maxrestarts=1000) normalmix$loglik normalmix$lambda se<-boot.se(normalmix,B=1000) se$lambda.se se$mu.se se$sigma.se final results: lambdahat = 0.990238663 mu1hat= -0.00115 mu2hat= 0.040176949 sigma1hat= 0.012220305 sigma2hat= 0.003247102 My problem now is - and thats why I feel uncomfortable about relying on the values - that the output of boot.se(normalmix) varies quite strong. So without changing the code and rerun it (with the...