Displaying 20 results from an estimated 36 matches for "lambda1".
Did you mean:
lambda
2009 May 16
1
maxLik pakage
...g(\nu\pi)\\
&-&n\log\Gamma(\frac{\nu}{2})-\frac{\nu+1}{2}\sum_{i=1}^{n}\log(1+\frac{(x_i-\xi)^2}{\omega^2\nu})+\sum_{i=1}^{n}\log\Phi(\lambda_1\frac{(x_i-\xi)}{\sqrt{\omega^2+\lambda_2(x_i-\xi)^2}})
\end{eqnarray*}
##############
G2StNV178<-function(a){
require(maxLik)
II=0
nu<-(a[1])
lambda1<-a[2]
lambda2<-a[3]
ksi<-a[4]
omega<-a[5]
II<-log(prod((2*dt((x-ksi)/omega,nu)*pnorm((lambda1*(x-ksi)/omega)/sqrt(1+lambda2*((x-ksi)/omega)^2)))/omega))
II
}
########definition of gradient function
gradlik<- function(a){
nu<-a[1]
lambda1<-a[2]
lambda2<-a[3]
ksi<-a[4]...
2009 Jan 05
1
transform R to C
Dear R users,
i would like to transform the following function from R-code to C-code and call it from R in order to speed up the computation because in my other functions this function is called many times.
`dgcpois` <- function(z, lambda1, lambda2)
{
`f1` <- function(alpha, lambda1, lambda2)
return(exp(log(lambda1) * (alpha - 1) - lambda2 * lgamma(alpha)))
`f2` <- function(lambda1, lambda2)
return(integrate(f1, lower=1, upper=Inf, lambda1=lambda1, lambda2=lambda2)$value)
return(exp(log(lambda1) * z - lamb...
2008 Sep 11
0
Loop for the convergence of shape parameter
...^alpha-14^alpha)
r<-c(1,0,0,1)
k<-c(3,2,2,2)
x<-c(0.5,0.5,1.0,1.0)
% estimate lambda (lambda=beta0+beta1*x)
GLM_results <- glm(r/k ~ x, family=binomial(link='cloglog'),
offset=log(verpi),weights=k)
beta0<-GLM_results$coefficients[[1]]
beta1]<-GLM_results$coefficients[[2]]
lambda1<-beta0+beta1*x[1]
lambda2<-beta0+beta1*x[2]
% using lambda, estimate alpha (a=alpha) through ML estimation
L<-function(a){
s1_f1<-(exp(-lambda1*(0^a-0^a))-exp(-lambda1*(5^a-0^a)))
s2_f2<-(exp(-lambda1*(10^a)-lambda2*(14^a-10^a+14^a-14^a))
-exp(-lambda1*(10^a)-lambda2*(14^a-1...
2008 Sep 12
1
Error in "[<-"(`*tmp*`, i, value = numeric(0)) :
...estimation is as
following:
1) with alpha=0, estimate lambda (estimate beta0 and beta1 via GLM)
2) with lambda, estimate alpha via ML estimation
3) with updated alpha, replicate 1) and 2) until alpha is converged to a
value
My source code is
alpha=rep(1,100)
beta0=rep(0,100)
beta1=rep(0,100)
lambda1=rep(0,100)
lambda2=rep(0,100)
verpi=rep(0,100)
L=rep(0,100)
alpha[0]=1
i=1
while(i<=100){
repeat{
verpi[i]<-c(5^alpha[i-1],10^alpha[i-1]-5^alpha[i-1],14^alpha[i-1]-10^alpha[i-1],18^alpha[i-1]-14^alpha[i-1])
r<-c(1,0,0,1)
k<-c(3,2,2,2)
x<-c(0.5,0.5,1.0,1.0)
GLM_results <- glm(r/...
2006 Jul 07
1
convert ms() to optim()
...The "Calc" function is also attached.
ms(~ Calc(a.init, B, v, off, d, P.a, lambda.a, P.y, lambda.y,
10^(-8), FALSE, 20, TRUE)$Bic,
start = list(lambda.a = 0.5, lambda.y = 240),
control = list(maxiter = 10, tol = 0.1))
Calc <- function(A.INIT., X., V., OFF., D.,
P1., LAMBDA1., P2., LAMBDA2.,
TOL., MONITOR., MAX.ITER., TRACE.){
lambda1 <- abs(LAMBDA1.)
lambda2 <- abs(LAMBDA2.)
P <- lambda1 * P1. + lambda2 * P2.
a <- Estimate(A.INIT., X., V., OFF., D., P,
TOL., MONITOR., MAX.ITER.)
Ita <- OFF. + X. %*% a
Mu <- c(exp(Ita))
Wt <- Mu *...
2007 Mar 06
2
Estimating parameters of 2 phase Coxian using optim
Hi,
My name is Laura. I'm a PhD student at Queen's University Belfast and have
just started learning R. I was wondering if somebody could help me to see
where I am going wrong in my code for estimating the parameters [mu1, mu2,
lambda1] of a 2-phase Coxian Distribution.
cox2.lik<-function(theta, y){
mu1<-theta[1]
mu2<-theta[2]
lambda1<-theta[3]
p<-Matrix(c(1, 0), nrow=1, ncol=2)
Q<-Matrix(c(-(lambda1 + mu1), 0, lambda1, -mu2), nrow=2, ncol=2)
q<-Matrix(c(mu1,...
2013 Feb 12
0
error message from predict.coxph
...ssage. Namely: stratified data, predict='expected', new data, se=TRUE. I think I found the error but I'll leave that to you to decide.
Thanks,
Chris
######## CODE
library(survival)
set.seed(20121221)
nn <- 10 # sample size in each group
lambda0 <- 0.1 # event rate in group 0
lambda1 <- 0.2 # event rate in group 1
t0 <- 10 # time to estimate expected numbers of events
# 'correct' number of events at time t0 = rate of events (lambda) times time (t0)
t0*lambda0
t0*lambda1
# generate uncensored data
T0 <- rexp(nn, rate=lambda0)
T1 <- rexp(nn, rate=lambda1)
th...
2011 Jul 02
1
Simulating inhomogeneous Poisson process without loop
Dear all
I want to simulate a stochastic jump variance process where N is Bernoulli
with intensity lambda0 + lambda1*Vt. lambda0 is constant and lambda1 can be
interpreted as a regression coefficient on the current variance level Vt. J
is a scaling factor
How can I rewrite this avoiding the loop structure which is very
time-consuming for long simulations?
for (i in 1:N){
...
N <- rbinom(n=1, size=1, prob=(la...
2008 Sep 19
2
Error: function cannot be evaluated at initial parameters
I have an error for a simple optimization problem. Is there anyone knowing
about this error?
lambda1=-9
lambda2=-6
L<-function(a){
s2i2f<-(exp(-lambda1*(250^a)-lambda2*(275^a-250^a))
-exp(-lambda1*(250^a)-lambda2*(300^a-250^a)))
logl<-log(s2i2f)
return(-logl)}
optim(1,L)
Error in optim(1, L) : function cannot be evaluated at initial parameters
Thank you in advance
--
View this m...
2007 Sep 10
2
Are the error messages of ConstrOptim() consisten with each other?
...onstrOptim(c(0.5,0.9,0.5), f=fit.error, gr=fit.error.grr, ui=ui,ci=ci)
Error in constrOptim(c(0.5, 0.9, 0.5), f = fit.error, gr = fit.error.grr, :
initial value not feasible
> constrOptim(c(0.3,0.5,0.5), f=fit.error, gr=fit.error.grr, ui=ui,ci=ci)
Error in f(theta, ...) : argument "lambda1" is missing, with no default
I only changed the parameters, how come the lambda1 that is not
missing in the first 2 cases suddently become missing?
For your convenience, I put the complete code below:
Best Wishes
Yuchen Luo
########################################
rm(list = ls())
mat=5
r...
2011 May 01
1
Different results of coefficients by packages penalized and glmnet
...y, I learn to use penalized logistic regression. Two packages
(penalized and glmnet) have the function of lasso.
So I write these code. However, I got different results of coef. Can someone
kindly explain.
# lasso using penalized
library(penalized)
pena.fit2<-penalized(HRLNM,penalized=~CN+NoSus,lambda1=1,model="logistic",standardize=TRUE)
pena.fit2
coef(pena.fit2)
opt<-optL1(HRLNM,penalized=~CN+NoSus,fold=5)
opt$lambda
coef(opt$fullfit)
prof<-profL1(HRLNM,penalized=~CN+NoSus,fold=opt$fold,steps=20)
plot(prof$lambda, prof$cvl, type="l")
plotpath(prof$fullfit)
pena.fit2<...
2006 Oct 02
1
multilevel factor model in lmer
...ponse model. The one parameter model is
straightforward. A two-factor model requires a set of factor loadings
multiplying a single random effect. For example, a logit model for the ith
subject responding correctly to the jth item (j=1,..,J) is
logit[p(ij)] = a1*item1(i) + ... + aJ * itemJ(i) +
lambda1*item1(i)*u(i) + ... + lambdaJ*itemJ(i)*u(i)
where the lambdas are factor loadings, with lambda1 fixed to 1.0 and
item1-itemJ are dummy variables for the items.
Thanks,
Dan
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Daniel A. Powers, Ph.D.
Department of Sociology
University of Texas at Austin...
2007 Mar 13
0
multiplying matrix by vector of times
...versity Belfast
>>>>> and have
>>>>> just started learning R. I was wondering if somebody could help me
>>>>> to see
>>>>> where I am going wrong in my code for estimating the parameters
>>>>> [mu1, mu2,
>>>>> lambda1] of a 2-phase Coxian Distribution.
>>>>>
>>>>> cox2.lik<-function(theta, y){
>>>>> mu1<-theta[1]
>>>>>
>>>>> mu2<-theta[2]
>>>>>
>>>>> lambda1<-theta[3]
>>>&g...
2008 Nov 15
1
rgamma with rate as vector
Hi - I have a question about the following code from Bayesian
Computation with R (Jim Albert).
par(mfrow=c(2,2))
m = 500
alphas = c(5, 20, 80, 400)
for (j in 1:4) {
mu = rgamma(m, shape=10, rate=10)
lambda1 = rgamma(m, shape=alphas[j], rate=alphas[j]/mu)
lambda2 = rgamma(m, shape=alphas[j], rate=alphas[j]/mu)
plot(lambda1, lambda2)
title(main=paste('alpha=', alphas[j]))
}
How does the function rgamma work in the instance with the rate
specified as a vector of values? My understa...
2011 Jun 14
2
How to generate bivariate exponential distribution?
Any one know is there any package or function to generate bivariate
exponential distribution? I gusee there should be three parameters, two rate
parameters and one correlation parameter. I just did not find any function
available on R. Any suggestion is appreciated.
--
View this message in context:
2001 Sep 14
1
Supply linear constrain to optimizer
...finite mixture of negative exponential
distributions using maximum likelihood based on the example given in MASS.
So far I had much success in fitting two components. The problem started
when I tried to extend the procedure to fit three components.
More specifically,
likelihood = sum( ln(c1*exp(-x/lambda1)/lambda1 +
c2*exp(-x/lambda2)/lambda2 + (1-c1-c2)*exp(-x/lambda3)/lambda3) )
I've used optimizers such as ms and nlminb (SPLUS 5.0 for UNIX), and
provided parameters constrains (0 <= c1, c2 <= 1) to nlminb via lower and
upper. But these constrains provide no protection for (1-c1-c2) bein...
2023 Aug 27
1
Query on finding root
On Fri, 25 Aug 2023 22:17:05 +0530
ASHLIN VARKEY <ashlinvarkey at gmail.com> wrote:
> Sir,
Please note that r-help is a mailing list, not a knight! ??
> I want to solve the equation Q(u)=mean, where Q(u) represents the
> quantile function. Here my Q(u)=(c*u^lamda1)/((1-u)^lamda2), which is
> the quantile function of Davies (Power-pareto) distribution. Hence I
> want to
2010 Nov 15
2
Zero truncated Poisson distribution & R2WinBUGS
...#####################
library("R2WinBUGS") # Load R2WinBUGS package
sink("Model.txt")
cat("
model {
# Priors: new uniform priors
p0~dunif(0,1)
lam1~dgamma(.01,.01)
# Likelihood
# Biological model for true abundance
for (i in 1:R) { # Loops over R sites
N1[i] ~ dpois(lambda1[i])
lambda1[i] <- lam1
}
# Observation model for replicated counts
for (i in 1:n) { # Loops over all n observations
C1[i] ~ dbin(p1[i], N1[site.p[i]])
p1[i] <-p0
}
# Derived quantities
totalN1 <- sum(N1[]) # Estimate total population size across all sites
}
",fill=TRUE...
2010 Oct 25
0
penalized regression analysis
...am struggling to
understand is where do I get the variance explained information from and how
do I determine the relative importance of the 4 variables selected? It does
not appear to be a part of the penalized procedure.
I submit the final call to 'penalized' with the estimated values of lambda1
and lambda2
> fitfinal <-
penalized(CHAB~.,data=chabun,lambda1=356.0856,lambda2=3.458605,model =
"linear",steps=1,standardize = TRUE)
# nonzero coefficients: 5
> fitfinal
Penalized linear regression object
10 regression coefficients of which 5 are non-zero
Loglikelihood = -...
2017 Oct 31
0
lasso and ridge regression
...erty is proposed
The proposed method is given
<https://i.stack.imgur.com/Ta8FR.jpg>
The problem is how to adapt "glmnet" to accomplish our task.
The extract of the code used is reproduced as follows;
cv.ridge<- glmnet(x, y, family="gaussian", alpha=0,
lambda=lambda1, standardize=TRUE)
cv.lasso<- glmnet(x, y, family="gaussian", alpha=1,
lambda=lambda2, standardize=TRUE)
##weight
a=1/abs(matrix(coef(cv.ridge, s=lambda1)[, 1][2:(ncol(x)+1)]
))^1
b=1/abs(matrix(coef(cv.lasso, s=lambda2)[, 1][2:(ncol(x)+1)]
))^1
c=a*b...