search for: interaction_averag

Displaying 4 results from an estimated 4 matches for "interaction_averag".

Did you mean: interaction_average
2012 Jan 12
0
glht (multicomparisons) with an interaction factor
...09541 3.037 0.0060 ** SUB - H == 0 -0.22610 0.22626 -0.999 0.5609 SUB - M == 0 -0.51586 0.21921 -2.353 0.0441 * (Adjusted p values reported -- single-step method) and with a single factor involved in an interaction > summary(glht(mq5, linfct=mcp(estacion="Tukey", interaction_average=TRUE))) Estimate Std. Error z value Pr(>|z|) verano - primavera == 0 -1.352 0.151 -8.952 <2e-16 *** (Adjusted p values reported -- single-step method) But how can i test the interaction "zona:estacion", I've tried to do this ways, but doe...
2012 Feb 13
0
pairwise comparisons with multcomp package
....927e-06 *** zona3 2 931.4 290 36569 3.0167 0.050510. estacion:zona3 2 2421.7 288 34148 7.8438 0.000482 *** > summary(glht(modezqM,linfct=mcp(zona3="Tukey",interaction_average=T))) Estimate Std. Error z-value Pr(>|z|) norte - turist == 0 -0.05182 0.23701 -0.219 0.9727 occid - turist == 0 -1.05970 0.41618 -2.546 0.0271 * occid - norte == 0 -1.00788 0.45830...
2012 Nov 19
0
glht function in multcomp gives unexpected p=1 for all comparisons
...Binomial GLM: glm.out <- glm(survival~Site*Treatment, data=surv.data, family="binomial", weights=rep(10, nrow(surv.data))) anova(glm.out, test="Chisq")??? # Treatment effect: p=0.001291 # Post-hoc test library(multcomp) summary(glht(glm.out, mcp(Treatment="Tukey", interaction_average=TRUE))) This gives me the following results: ???????? Simultaneous Tests for General Linear Hypotheses Multiple Comparisons of Means: Tukey Contrasts Fit: glm(formula = survival ~ Site * Treatment, family = "binomial", ??? data = surv.small, weights = rep(10, nrow(surv.small)))...
2013 Mar 13
1
multi-comparison of means
Hi all: I have a question about multi-comparison. The data is in the attachment. My purpose: Compare the predicted means of the 3 methods(a,b,c) pairwisely. I have 3 ideas: #idea1 result_aov<-aov(y~ method + x1 + x2) TukeyHSD(result_aov) diff lwr upr p adj b-a 0.845 0.5861098 1.1038902 0.0000001 c-a 0.790 0.5311098 1.0488902 0.0000002 c-b -0.055 -0.3138902