Displaying 8 results from an estimated 8 matches for "imp2".
Did you mean:
imp
2010 Aug 10
1
Multiple imputation, especially in rms/Hmisc packages
...set.seed(1)
x1 <- rnorm(40)
x2 <- 0.5*x1 + rnorm(40,0,3)
y <- x1^2 + x2 + rnorm(40,0,3)
x2[40] <- NA # create 1 missing value in x2
a <- aregImpute(~ y + x1 + x2, n.impute=2, nk=3) # 2 imputations
x2.imp1 <- x2; x2.imp1[40] <- a$imputed$x2[,1] # first imputed x2 vector
x2.imp2 <- x2; x2.imp2[40] <- a$imputed$x2[,2] # second imputed x2 vector
ols.imp1 <- ols(y ~ rcs(x1,3) + x2.imp1) # model on imputation 1
ols.imp2 <- ols(y ~ rcs(x1,3) + x2.imp2) # model on imputation 2
d <- data.frame(y, x1, x2)
fmi <- fit.mult.impute(y ~ rcs(x1,3) + x2, ols, a, da...
2004 Jul 21
1
function ms
Dear R users,
I am using the MICE package. Specifically, at some point in my code I have
imp2=mice(PoptotalMICE,imputationMethod="logreg2")
And R returns...
iter imp variable
1 1 MICEYError in logitreg(xobs, yobs, intercept=F) :
couldn't find function "ms"
I have been looking for this ms function on the web, hoping it was just a matter of download...
2012 Apr 25
2
Accessing a list
Hi,
I have the following problem- I want to access a list whose elements are
imp1, imp2, imp3 etc I tried theusing the paste comand in a for loop see
the last for loop below. But I keep calling it df but df = imp1 (for the
first run). Any ideas on how I can access the elements of the list?
Isaac
require(Amelia)
library(Amelia)
data.use <- read.csv("multiplecarol.CSV",...
2013 Jan 28
6
Thank you your help.
Hi,
temp3<- read.table(text="
ID CTIME WEIGHT
HM001 1223 24.0
HM001 1224 25.2
HM001 1225 23.1
HM001 1226 NA
HM001 1227 32.1
HM001 1228 32.4
HM001 1229 1323.2
HM001 1230 27.4
HM001 1231 22.4236 #changed here to test the previous solution
",sep="",header=TRUE,stringsAsFactors=FALSE)
?tempnew<- na.omit(temp3)
?grep("\\d{4}",temp3$WEIGHT)
#[1] 7 9 #not correct
2012 Mar 07
0
Multiple imputation using mice
...ome huge out of range values. Here
are summary statistics before and after imputation:
> summary(aux$emitters) #original data
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.00219 2.10200 7.33800 17.87000 23.15000 136.20000 52.00000
> summary(complete(imp2)$emitters) #imputation 1
Min. 1st Qu. Median Mean 3rd Qu. Max.
-68.920 2.062 10.000 19.980 32.980 136.200
> summary(complete(imp2,2)$emitters) #imputation 2 (looks better)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-30.650 1.848 8.808 20.480 32.980 136.200
etc....
2012 Oct 03
0
calculating gelman diagnostic for mice object
...m using -mice- for multiple imputation and would like to use the gelman
diagnostic in -coda- to assess the convergence of my imputations. However,
gelman.diag requires an mcmc list as input. van Buuren and
Groothuis-Oudshoorn (2011) recommend running mice step-by-step to assess
convergence (e.g. imp2 <- mice.mids(imp1, maxit = 3, print = FALSE) ) but
this creates mids objects. How can I convert the mids objects into an mcmc
list? Or is the step-by-step approach wrong here?
thanks,
Rachel
[[alternative HTML version deleted]]
2009 Mar 27
0
read.table on long lines buggy (PR#13626)
...1, ERD1, EXG1, FBA1, FBP1, FBP26, FDH1, FKS1, GAC1, GAL1, GAL10, GAL2, GAL3,
GAL4, GAL7, GAL80, GCY1, GDA1, GDB1, GFA1, GIP2, GLC3, GLC7, GLC8, GLG1, GLG2,
GLK1, GLO2, GLO4, GNA1, GND1, GND2, GNT1, GPH1, GPM1, GRE3, GSC2, GSY1, GSY2,
GTB1, GUT2, HAP4, HKR1, HOC1, HOR2, HPF1, HXK1, HXK2, HXT4, ICL1, IMP2', INM1,
INM2, ITR1, KAR2, KEG1, KNH1, KRE2, KRE5\nc:ABC1")
> read.table("tst1", sep=":", stringsAsFactors=F)[,1]
[1] "c"
Warning message:
In read.table("tmp1", sep = ":", stringsAsFactors = F) :
incomplete final line found by readTable...
2012 Oct 26
0
combined output with zelig is not working!?!
...e
quite dated and none really related to my problem.
I have been tirelessly working with zelig and unfortunately i am getting
real stuck! here is my R code:
###these are my 5 imputed datasets####
d.1 <- read.table("imp1.csv", header=TRUE,sep=",")
d.2 <- read.table("imp2.csv", header=TRUE,sep=",")
d.3 <- read.table("imp3.csv", header=TRUE,sep=",")
d.4 <- read.table("imp4.csv", header=TRUE,sep=",")
d.5 <- read.table("imp5.csv", header=TRUE,sep=",")
#####my zelig code#####
model3=zel...